
Axelar Gateway

Smart Contract Audit

November 22, 2021

Common Prefix



2

Overview
Introduction
Common Prefix was commissioned to perform a security audit on Axelar’s

cgp-solidity-gateway smart contracts, at commit hash

120b011b37ae1f5228a5302065e7c67238be9160. The files inspected are the following:

AdminMultisigBase.sol

AxelarGatewayMultisig.sol

AxelarGatewayProxyMultisig.sol

AxelarGatewayProxySinglesig.sol

AxelarGatewayProxy.sol

AxelarGatewaySinglesig.sol

AxelarGateway.sol

BurnableMintableCappedERC20.sol

Burner.sol

Context.sol

ECDSA.sol

ERC20.sol

EternalStorage.sol

Ownable.sol

Findings Severity Breakdown
The findings are classified under the following severity categories according to the impact and

the likelihood of an attack.

Level Description

Critical Logical errors or implementation bugs that are easily exploited and may
lead to any kind of loss of funds

High Logical errors or implementation bugs that are likely to be exploited and
may have disadvantageous economic impact or contract failure

Medium Issues that may break the intended contract logic or lead to DoS attacks



3

Low Issues harder to exploit (exploitable with low probability), clumsy logic
or implementation that lead to poor contract performance

Informational Advisory comments and recommendations that could help make the
codebase clearer, more readable and easier to maintain

Executive Summary
The audited codebase is well written and of professional quality. We found no critical or high

severity issues, which denote an overall healthy protocol and implementation.

We find that the current burning mechanism may not be economically practical for chains with

non-negligible gas prices, since it requires the deployment and destruction of a new Burner

contract upon each burn transaction. Apart from this, we mostly point out some

recommendations that we believe could make the codebase clearer and simpler - thus more

robust against future bugs - but also more gas efficient. A final observation is made on the

decentralization of trust in regards to the upgrade mechanism.

Disclaimer
Note that this audit does not give any warranties on the bug-free status of the given smart

contracts, i.e. the evaluation result does not guarantee the nonexistence of any further findings

of security issues. This audit report is intended to be used for discussion purposes only. We

always recommend proceeding with several independent audits and a public bug bounty

program to ensure the security of the project.



4

Findings
Critical
None found.

High
None found.

Medium
None found.

Low

LOW-1 Burning scheme seems unaffordable for chains with considerable gas
costs

Contract(s) AxelarGateway.sol, Burner.sol

Status Open

Description

In the current implementation a user of the Axelar Network that wishes to burn some amount

should transfer the amount to a specific (unused address) that is computed by CREATE2

operation given appropriate parameters. Under normal conditions, Axelar’s gateway contracts

are then triggered to construct a Burner contract at that address. This Burner contract burn()s

all of its balance (previously transferred by the user) and finally selfdestruct()s. This design



5

seems to be related to the level of abstraction wished for the network’s operation across the

supported chains. However, deploying and destructing a contract for each burn operation seems

to be an unaffordable solution for chains with non-negligible gas costs, such as the Ethereum

blockchain.

Recommendation

This issue seems to be strongly related to the overall protocol design. However, we believe that

solutions that avoid such high gas cost operations are worth exploring, especially when

concerning transactions that are likely to also serve small amounts.

LOW-2 Shared storage scheme is of high complexity and gas costs

Contract(s) Most of the contracts affected

Status Open

Description

It is not obvious why the Eternal Storage scheme has been chosen given the complexity and the

increased gas costs that it comes with.

Recommendation

Explore the alternative of the simpler Inherited Storage shared storage scheme.

Informational

INFO-1 Unnecessary special treatment of ‘implementation’ storage slot key

Contract(s) AxelarGateway.sol, AxelarGatewayProxy.sol

Status Open

https://blog.openzeppelin.com/proxy-patterns/


6

Description

In the Eternal Storage schema, state variable values are stored into a mapping of appropriate

type. Every key in the mapping, i.e. the final storage slot, is usually computed as the hash of a

short and intuitive description, e.g.

bytes32 internal constant KEY_OPERATOR_EPOCH = keccak256('operator-epoch');

However special treatment is given to the key of the logic contract’s address, following the

guidelines of EIP1967:

/// @dev Storage slot with the address of the current factory.
/// `keccak256('eip1967.proxy.implementation') - 1`.

bytes32 internal constant KEY_IMPLEMENTATION =

bytes32(0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc);

However such a special treatment is unnecessary in the context of Eternal Storage, since

storage collisions between variables defined by the proxy and the implementation contract are

avoided by design. In fact, this guideline should be followed in cases of Unstructured Storage

Proxies.

Recommendation

We suggest changing keccak256('eip1967.proxy.implementation') - 1 to

keccak256('implementation') for clarity and uniformity.

INFO-2 setup function in logic contract called only by a proxy

Contract(s) AxelarGatewayMultisig.sol, AxelarGatewaySinglesig.sol

Status Open

Description

https://eips.ethereum.org/EIPS/eip-1967
https://docs.openzeppelin.com/upgrades-plugins/1.x/proxies#unstructured-storage-proxies
https://docs.openzeppelin.com/upgrades-plugins/1.x/proxies#unstructured-storage-proxies


7

It is important that the setup function in contracts AxelarGatewayMultisig.sol,

AxelarGatewaySinglesig.sol should be able to be called only by a proxy contract, so that

the logic contract cannot be manipulated by an attacker. Currently, this is ensured by the

following requirement:

// Prevent setup from being called on a non-proxy (the implementation)
require(implementation() != address(0), 'NOT_PROXY');

While this requirement ensures that a direct call to setup will fail, it would be clearer to define

and use an onlyProxy modifier:

address private immutable __self = address(this);
modifier onlyProxy() {

require(address(this) != __self, "Function must be called through
delegatecall");

require(_getImplementation() == __self, "Function must be called
through active proxy");

_;
}

Recommendation

We recommend using an onlyProxy modifier following the best practices.

INFO-3 Current upgrade mechanism rises a centralization issue

Contract(s) Whole protocol affected

Status Open

Description

At the heart of the protocol lies a government-like mechanism utilized for taking an important

action after a sufficient number of owners (or, in some cases, operators) have voted for it. Such

an action is, for example, the deployment of a new token on a chain. However, this voting

procedure is not part of the upgrade mechanism. Instead, the administrators are responsible for

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/proxy/utils/UUPSUpgradeable.sol#L31


8

the protocol upgrade. More specifically, a sufficient number of administrators should agree

to upgrade the protocol in respect to a specific threshold. This threshold value, as well as the

administrator addresses, the logic contract itself and other sensitive parameters of the protocol

are set during the initial construction of the logic contract and then altered via the upgrade

mechanism. Though the administrators may be considered trusted it is still possible that some

of them coalesce to gain more power over the protocol. Due to the significance of the upgrade

actions it is important to decentralize the trust as much as possible.

Recommendation

We recommend adopting a voting procedure for the upgrade actions as well.



9

About Common Prefix
Common Prefix is a blockchain research, development, and consulting company consisting of a

small number of scientists and engineers specializing in many aspects of blockchain science.

We work with industry partners who are looking to advance the state-of-the-art in our field to

help them analyze and design simple but rigorous protocols from first principles, with provable

security in mind.

Our consulting and audits pertain to theoretical cryptographic protocol analyses as well as the

pragmatic auditing of implementations in both core consensus technologies and application

layer smart contracts.

https://commonprefix.com/

