
Common Prefix

Preliminary Security Analysis of
ONEWallet

July 31th, 2021

Executive Summary

The current implementation of ONE wallet proposes an OTP-based wallet which uses a smart
contract implementation to maintain user funds. The wallet proposal includes several additional
mechanisms to ensure multi-factor security, such as guardians and social factors. The main goal
of the wallet is to offer reasonable security with great usability.

During the audit of the wallet, the Common Prefix team identified some critical issues with it. Our
main concern regarding the current version of ONE wallet is that it does not offer any more
usability or security compared to plain old private-key–based wallets. The design and
deployment of this wallet could replace the OTP-based functionality with a plain
private-key–based construction without loss of functionality or a gain in security or usability.
Given the current implemented version of ONE wallet, some security issues identified at an
earlier stage of this report were confirmed and resolved or currently dismissed.

For an enhanced, two level security construction several solutions are considered by Harmony.
These solutions are described in the Client Security document and are planned to be
implemented for a future version of the wallet. We provide an analysis of these proposals in the
second part of this report.

Common Prefix - Preliminary Security Analysis of ONEWallet 2

Material
This report is based on the following material:

● https://github.com/polymorpher/one-wallet/wiki/Home/3f658a4dfe5ae36b267d3ceb59282
c1182b1f6c7 (wiki)

● https://github.com/polymorpher/one-wallet/wiki/Security-Goals/c74c63a4d6fcc595d15a4
4b8306fbe866f7c6df5 (security goals)

● https://raw.githubusercontent.com/polymorpher/one-wallet/f6456805a43a64cd5b71cfc72
7d93d76da162a76/wiki/protocol.pdf (protocol)

● https://github.com/polymorpher/one-wallet/tree/414c0dbe0a3b4c6b7cfa382934e7d2d73
702451b/code (code)

Common Prefix - Preliminary Security Analysis of ONEWallet 3

https://github.com/polymorpher/one-wallet/wiki/Home/3f658a4dfe5ae36b267d3ceb59282c1182b1f6c7
https://github.com/polymorpher/one-wallet/wiki/Home/3f658a4dfe5ae36b267d3ceb59282c1182b1f6c7
https://github.com/polymorpher/one-wallet/wiki/Security-Goals/c74c63a4d6fcc595d15a44b8306fbe866f7c6df5
https://github.com/polymorpher/one-wallet/wiki/Security-Goals/c74c63a4d6fcc595d15a44b8306fbe866f7c6df5
https://raw.githubusercontent.com/polymorpher/one-wallet/f6456805a43a64cd5b71cfc727d93d76da162a76/wiki/protocol.pdf
https://raw.githubusercontent.com/polymorpher/one-wallet/f6456805a43a64cd5b71cfc727d93d76da162a76/wiki/protocol.pdf
https://github.com/polymorpher/one-wallet/tree/414c0dbe0a3b4c6b7cfa382934e7d2d73702451b/code
https://github.com/polymorpher/one-wallet/tree/414c0dbe0a3b4c6b7cfa382934e7d2d73702451b/code

Analysis

Protocol

1. OTP protocol compared to private-key wallet
The current design is a design based on the SmartOTP paper. However, contrary to the
SmartOTP paper, we see a few critical design differences:

1. The OTPs have few bits of security (20 bits)
2. The hashes of the OTPs must remain secret in order for security to be maintained, even

for amounts as low as $0.01
3. The client must maintain the secret hashes in order to be able to spend

Consider the current wallet design W, which contains an OTP module, as illustrated in Figure 1.
This wallet design can be replaced by a different wallet design W’, which contains a
private-key–based module in place of the OTP module. The wallet W’ is better in everything
compared to W.

Figure 1: The current wallet design W containing an OTP module can be replaced by a
different wallet design W’ containing a private-key–based module in its place.

The usability gain, from a user experience point of view, in the wallet W’ stems from the
following observation:

1. In the OTP-based wallet, the user must both press a button to pay and enter an OTP
code.

2. In the password-based wallet, the user must only press a button to pay, and does not
need to enter an OTP code.

Common Prefix - Preliminary Security Analysis of ONEWallet 4

The usability gain, from a performance point of view, in the wallet W’ stems from the following
observation:

1. In the case of an OTP-based wallet, two transactions must be posted on the blockchain,
and a sufficient time must be allowed between the two to ensure no adversary can reorg
the chain. This imposes a time delay for each transaction performed. In particular, the
payment requires waiting for two liveness and two safety periods1 before it becomes
stable.

2. In the case of a private-key–based wallet, only one transaction must be posted on the
blockchain, imposing no additional delay between the issuance of a payment and its
posting on the chain. In particular, the payment requires one liveness and one safety
period before it becomes stable. As such, W’ is twice as performant as W.

Additionally, in terms of usability, there is a difference in gas fees costs:
1. In the case of an OTP-based wallet, two on-chain transactions are required. These

transactions are non-trivial and require additional gas.
2. In the case of a private-key–based wallet, only a single and simple on-chain transaction

is required. This transaction spends strictly less gas than each of the respective OTP
transactions.

While gas is not currently an issue with Harmony, it might become an issue as the blockchain
becomes more popular.

In terms of security due to the Client being compromised, the security of the wallet W’ is equal to
the security of the wallet W as follows:

1. If the Client is compromised in the case of the OTP, the OTPs are trivially compromised.
2. If the Client is compromised in the case of the private key, the wallet is, again, trivially

compromised.
3. If the Client is not compromised in the case of the OTP, the OTPs are secure.
4. If the Client is not compromised in the case of a private-key–based wallet, the

private-key–based wallet is secure.

In terms of security due to a Common-Prefix–breaking adversary, the security of the wallet W’ is
superior to the security of the wallet W by the following argument:

1. An honest uncompromised Client’s money in the case of W can be stolen in case of a
Common Prefix violation. The chain can be reverted between the Commit and the
Reveal phase.

2. An honest uncompromised Client’s money in the case of W’ cannot be stolen due to
Common Prefix violations (although such violations can cause other harm in the chain).

1 Garay, J., Kiayias, A., & Leonardos, N. (2015, April). The bitcoin backbone protocol: Analysis and
applications. In Annual international conference on the theory and applications of cryptographic
techniques (pp. 281-310). Springer, Berlin, Heidelberg.

Common Prefix - Preliminary Security Analysis of ONEWallet 5

In terms of security due to attack surface:
1. The W wallet contains many moving parts and a complex smart contract implementation.

Even if there are no obvious bugs in the contract, there are many more locations an
adversary can look for opportunities.

2. The W’ wallet is a standard wallet which contains a strict subset of the moving parts of
the W wallet. Hence, if the attack surface of W’ contains no opportunities for
compromise, then so does an implementation of W, as W would also require a handling
of public key cryptography. On the contrary, a compromise of W’ does not entail a
compromise of W.

In terms of functionality, it is proposed that the OTP wallet can be used to spawn temporary
wallets that have only a particular lifetime. However, the same functionality can be achieved in a
private-key–based wallet, too. The mechanism to do that is to replace the OTP-based Merkle
Tree with a Merkle Tree of public keys. If Harmony wishes to explore this avenue in more detail,
we can provide a complete design allowing these abilities.

Lastly, we remark that, while OTP might not be the only component of the W wallet in the future,
the OTP component itself can be replaced within the wallet, while leaving all other functionality
intact. Therefore, if the OTP-based wallet is extended with social features, guardians, or daily
limits, these can likewise be implemented in a private-key–based wallet, yielding a more secure,
more usable, and just as functional wallet.

2. Client is single point of trust and failure
The major issue of the current version of the wallet is that it relies completely on the client’s
security.

Specifically, we consider two cases of client corruption: A) during setup, B) at any point during
the execution:

A. If the Client is compromised during setup, then the seed k is leaked. As a result, the
adversary can compute all OTPs, past and future.

B. If the Client is compromised during the execution, then the hash of the seed kh and all
Merkle Tree leaves { Li-j: j = 0...d-1, i = 1...2(d-j) } are leaked.

Since the OTP search space is only 106, an attacker with access to kh can reverse (via
brute-force) the OTP of any period and compare it to the respective leaf (this is also detailed in
the “client security” and “protocol” documents). This conflicts with the properties “resilient”,
“sufficient”, “composable”, as defined in the “security goals” document.

In summary, until the “brute-force” bug is fixed, the OTP wallet seems of no added value
compared to a common private key based wallet. Specifically, it does not increase security (as it

Common Prefix - Preliminary Security Analysis of ONEWallet 6

completely relies on the client’s security) and adds extra complexity and cost (for performing the
on-chain transactions), whereas it could be simply run on the client module.

Alleviation
Note that Harmony is aware of the security implications coming with a compromised Client and
is working on solutions to strengthen the overall security. The proposed solutions are described
at
https://github.com/polymorpher/one-wallet/wiki/Client-Security/369d114fe00a61a02788914928a
a5ac5a96aa8b3 and a combination of them is planned to be implemented in a next version of
the wallet. For an analysis of these proposals refer to the second part of this report Client
Security Document Analysis.

3. Front-running attack
The wiki states that: “In practice, the Client should refrain from revealing the details (the second
stage) until the OTP expires for its 30-second time window.”
However, this is:
I. not defined in the protocol;
II. not required in respect to the implementation of ONE Wallet - a reveal transaction is

accepted regardless of the elapsed time since the corresponding commit transaction.
As a result, a malicious party can perform a front-running attack, as follows.

Assume that the wallet’s owner A wants to perform a transfer τ = (Pt, Qt, tramount, trdest). First, A’s
client commits to it, by creating a transaction t1 that calls the smart contract’s commit function
with the hash of τ. Following, as soon as A’s client receives confirmation that the commitment
transaction is finalized, it creates a transaction t2 that calls the revealTransfer of the smart
contract and contains τ.

The attacker behaves as follows:
1. Malicious relayer: Upon receiving t2, the attacker (who controls the relayer) does not

publish it on the ledger.
2. Front-running attacker: Upon observing t2, the attacker publishes the two front-running

transactions with much higher gas than t2 (such that miners prioritize them).

In both cases, the attacker creates the following two transactions:
1. A transaction that commits to (Pt, Qt, tr’amount, tr’dest), where tr’dest is an address controlled

by the attacker.
2. A transaction that calls revealTransfer with arguments (Pt, Qt, tr’amount, tr’dest).

Observe that the attacker’s transactions are successfully executed if:
1. They are executed before t2 (which is ensured as above).

Common Prefix - Preliminary Security Analysis of ONEWallet 7

https://github.com/polymorpher/one-wallet/wiki/Client-Security/369d114fe00a61a02788914928aa5ac5a96aa8b3
https://github.com/polymorpher/one-wallet/wiki/Client-Security/369d114fe00a61a02788914928aa5ac5a96aa8b3

2. The OTP Qt is valid upon commitment (which is true, since the client does not wait for
enough time before broadcasting t2).

As a result, the attacker steals tr’amount from the wallet (an amount possibly up to the daily limit).

Recovery address reset
The OTPs are used for three operations:

1. Transfer of funds (revealTransfer).
2. Resetting of the recovery address (revealSetLastResortAddress).
3. Draining the wallet, by transferring its balance to the recovery address

(revealRecovery).

Therefore, the above front-running attack can also be used to: i) reset the contract’s recovery
address to an adversarial one; ii) forcibly drain the contract (possibly to an adversarial address,
if two front-running attacks are performed).

Alleviation
The protocol has been updated by Harmony’s team and such front-running attacks are no
longer possible. For details, refer to the next section of this document Smart Contract
Implementation > High Severity Issues.

Smart Contract Implementation

We inspected Harmony’s one-wallet implementation at commit hash
485ca526d347f30a7a539713b10642ad0c4aac67. We mainly focused on security vulnerabilities
other than any inherent weaknesses of the protocol design.

Critical severity issues (Resolved)
1. One of the three reveal functions in ONEWallet.sol does not check the correctness of the

Merkle proof provided. Specifically,
function revealSetLastResortAddress(bytes32[] calldata neighbors, uint32
indexWithNonce, bytes32 eotp, address payable lastResortAddress_)
external

is missing the isCorrectProofmodifier, resulting in a critical security issue.

We consider this issue to be of critical severity as an attacker could easily exploit it to execute
arbitrary transactions, even draining the wallet.

Alleviation
This issue was immediately reported to Harmony’s engineering team and fixed right away in

Common Prefix - Preliminary Security Analysis of ONEWallet 8

https://github.com/polymorpher/one-wallet/commit/23072934322033e3f702dbf53d953eb74d2d4
bb4.

High severity issues (Resolved)
1. Front-running
Front-running attacks are currently possible, as described above in Protocol/Front-running
attack.
To prevent such attacks we suggest that an extra check be added in each reveal-related
function, requiring that the interval period (30 seconds) since the commit transaction has
passed.
We consider this issue to be of high severity because of its possible impact (loss of user’s
funds) but also due to the increasing frequency of front-running attacks nowadays.

Alleviation
A forced 30-second delay between the two stages for a transaction’s execution was considered
unacceptable by Harmony’s team, for efficiency reasons. Instead, the team decided to slightly
alter the commitment scheme in order to mitigate such front-running attacks. The corresponding
changes can be found at https://github.com/polymorpher/one-wallet/pull/56.
However, Commit Reveal team found that this new version allowed for another front-running
related vulnerability. In this attack the user's funds are not in danger, but the attacker can delay
the user’s transactions for an arbitrary period of time, i.e. causing a DoS. The detailed
discussion can be found at https://github.com/polymorpher/one-wallet/issues/59.
Harmony’s team immediately responded to this issue by applying a patch, which can be found
at https://github.com/polymorpher/one-wallet/pull/60.

Low severity issues (Dismissed)
A number of timing hazards are possible in the current implementation.
The smart contract relies on block timestamps to:

1. Verify whether a reveal is timely (_isRevealTimely)
2. Cleanup commits (_cleanupCommits) and nonces (_cleanupNonces)
3. Drain the wallet after its lifespan expires (retire)
4. Calculate the total daily transferred amount (revealTransfer)

However, miners can manipulate the block’s timestamps and possibly result in unexpected
behaviour. For example, a miner may set a large timestamp to force a reveal to fail or retire the
wallet ahead of time.
We consider these hazards to be of low severity because miners are not generally expected to
be easily motivated to tamper with a block’s timestamp.

Common Prefix - Preliminary Security Analysis of ONEWallet 9

https://github.com/polymorpher/one-wallet/commit/23072934322033e3f702dbf53d953eb74d2d4bb4
https://github.com/polymorpher/one-wallet/commit/23072934322033e3f702dbf53d953eb74d2d4bb4
https://github.com/polymorpher/one-wallet/pull/56
https://github.com/polymorpher/one-wallet/issues/59
https://github.com/polymorpher/one-wallet/pull/60

Alleviation
Harmony decided to dismiss these issues as such attacks are considered rather unlikely in
harmony’s ecosystem, where miners are strongly disincentivized to tamper with timestamps.

Suggestions
We provide some suggestions that we believe would make the code more readable and
efficient.

1. NatSpec Format for comments (Partially Resolved - the contract was enriched with
detailed comments, however not following the NatSpec format)
Consider providing comments in the Ethereum Natural Language Specification
(NatSpec) for more readable and easily maintainable code. Solc compiler can parse
comments in this format and produce documentation in JSON files.
https://docs.soliditylang.org/en/v0.8.6/natspec-format.html

2. Immutable variables (Resolved)
Many of the contract’s state variables are constants in the sense that they are assigned
during construction and never change their value. Specifically, these variables are the
following:

bytes32 root
uint8 height
uint8 interval
uint32 t0
uint32 lifespan
uint8 maxOperationsPerInterval

We suggest that these variables are declared immutable. Reading immutable state
variables is significantly cheaper than reading from regular state variables, since
immutables are not stored in storage, but their values are directly inserted into the
runtime code.

3. Gas-efficient (safe) arithmetic operations (Resolved)
Since Solidity v0.8 the compiler automatically checks arithmetic operations for overflow
or underflow. While this feature enhances the security of a smart contract, it comes with
higher gas costs for each arithmetic operation. This is aimless in cases where the
calculations are never going to result in overflow/underflow. For example, in
ONEWallet::_cleanupCommits:

for (uint32 i = 0; i < commits.length; i++) {

Common Prefix - Preliminary Security Analysis of ONEWallet 10

https://docs.soliditylang.org/en/v0.8.6/natspec-format.html

Commit storage c = commits[i];
if (c.timestamp >= bt - REVEAL_MAX_DELAY) {
commitIndex = i;
break;
}

}

Subtraction bt - REVEAL_MAX_DELAY is never going to underflow.

Another repeated and safe arithmetic operation (i - commitIndex) lies in
ONEWallet::_cleanupCommits:

for (uint32 i = commitIndex; i < len; i++) {
commits[i - commitIndex] = commits[i];

}

but also numValidIndices++ in ONEWallet::_cleanupNonces:
for (uint8 i = 0; i < nonceTracker.length; i++) {

uint32 index = nonceTracker[i];
if (index < indexMin) {

delete nonces[index];
} else {

nonZeroNonces[numValidIndices] = index;
numValidIndices++;

}
}

We suggest that the safe arithmetic operations inside for-loops are wrapped in unchecked{}
for gas-efficiency.
Reference:
https://docs.soliditylang.org/en/v0.8.0/control-structures.html#checked-or-unchecked-arithmetic

Differences between smart contract and protocol spec
● The smart contract performs a cleanup of old (i.e., older than 60 seconds) commits and

nonces. This operation is not part of the protocol’s specification.
● The smart contract allows the user to reset the recovery address, via the

revealSetLastResortAddress function. This is not part of the protocol’s specification;
instead, the spec implies that the recovery address can only be set during the contract’s
deployment (“if last resort address is not set when the wallet was created, the user may
choose a new address to transfer the funds”).

Common Prefix - Preliminary Security Analysis of ONEWallet 11

https://docs.soliditylang.org/en/v0.8.0/control-structures.html#checked-or-unchecked-arithmetic

● The smart contract enforces an upper bound on the operations per interval
(maxOperationsPerInterval_). This is not part of the current protocol’s specification.

● The smart contract enforces a 60-second upper bound delay (REVEAL_MAX_DELAY),
between committing and revealing an operation. Instead, the protocol set this bound to
30 seconds (Section 2.5.2 bullet (a).ii).

● In the protocol’s specification, the commitment contains all internal nodes of the Merkle
proof’s path. In the smart contract, the commitment contains only the first neighbor of the
leaf (neighbors[0]).

Miscellaneous
● In Section 2.2, bullet 7 of the protocol, the Client waits for 2 seconds, after a commit

transaction is published on the ledger and before it reveals its commitment. This seems
a rather small amount of time to wait, in order to protect against chain reorganizations.
Still, it depends on the underlying ledger’s properties, so it should either be dynamic or
additional analysis should be made to find if it suffices.

● During recovery, the protocol states (Section 3.1.2) that the Client receives only the seed
k from the user and then regenerates all information. In reality, it should also obtain t0, T
so the user should either i) supply these values directly or ii) supply the smart contract’s
address. In case of (ii), the variables t0 and T are internal (L15-16 of
code/contracts/ONEWallet.sol), so the client should manually parse the contract’s
deploying transaction to obtain them.

● The client relies entirely on Binance for price discovery (L90 of code/lib/api/index.js), a
noteworthy trust assumption.

Common Prefix - Preliminary Security Analysis of ONEWallet 12

Client Security Document Analysis
Material:

● https://github.com/polymorpher/one-wallet/wiki/Client-Security/369d114fe00a61a027889
14928aa5ac5a96aa8b3

Summary
In the client security document, a number of possible solutions are briefly described and
analyzed, aiming to increase the security of ONE Wallet. More specifically, the goal is to prevent
the client from being a single point of failure, in the sense that any attack leveraging a
compromised client should fail, unless additional information from the authenticator is leaked.

Solution 1: Controlled Randomness

Overview
The core idea of this solution is to increase the search space of the brute-forcing adversary,
while requiring some brute-forcing from the client (albeit over a much smaller search space).

Particularly, for each leaf, the proposed solution:
1. increases the search space for the adversary to 1012 and
2. requires that the client brute-forces a value from a search space of 106

The document references GPU benchmarks
(https://github.com/siseci/hashcat-benchmark-comparison/blob/45a27b32a2f24d317cc29741d6
4fc739f3a30cb5/1x%20Gtx%201080%20TI%20with%20Overclock%20Hashcat%20Benchmark
2018) to estimate that the time needed for the adversary to break the wallet is 10 minutes.

Following, the document proposes to double the OTP size (by requiring 2 OTPs from the user),
thus increasing the attacker’s search space to 1018, which is then estimated to require 19 years
using a high-end NVIDIA GPU and ~3 hours using an AntMiner (~100ΤΗ/s).

Analysis
1. The report suggests that increasing the search space for the adversary to 1012

presumably delays attacks (but not stop them) and the attacker could speed up the
attack to only a few minutes (or even seconds) by using modern GPUs and/or ASICs, so
it seems like a half-measure only.

2. The report suggests that increasing the search space for the adversary to 1018 delays
attacks, although again does not stop them if the adversary uses custom hardware.

Common Prefix - Preliminary Security Analysis of ONEWallet 13

https://github.com/polymorpher/one-wallet/wiki/Client-Security/369d114fe00a61a02788914928aa5ac5a96aa8b3
https://github.com/polymorpher/one-wallet/wiki/Client-Security/369d114fe00a61a02788914928aa5ac5a96aa8b3
https://github.com/siseci/hashcat-benchmark-comparison/blob/45a27b32a2f24d317cc29741d64fc739f3a30cb5/1x%20Gtx%201080%20TI%20with%20Overclock%20Hashcat%20Benchmark
https://github.com/siseci/hashcat-benchmark-comparison/blob/45a27b32a2f24d317cc29741d64fc739f3a30cb5/1x%20Gtx%201080%20TI%20with%20Overclock%20Hashcat%20Benchmark

3. It is unclear how requiring two OTPs from the user would work in practice. This proposal
implies changes in the smart contract and the client’s logic, which is unclear how much
effort would require to be implemented and how they would work.

In summary, increasing the search space of the brute-force to 1012 or 1018 may appear as an
improvement, but does not really prevent attacks. Particularly, since renting hash power is very
cheap (see below), it is not very realistic to assume that the attacker could not control a few
PH/s of mining power for a few hours. Another concern is that an altered protocol that requires
two OTP inputs for each transaction is not clearly described so far and may come with other
security implications.

Time-Cost evaluation
According to https://www.crypto51.app for SHA-256, renting 1 PH/hr costs $14.5, so:

● Renting 38 TH/s (which completely breaks the 1012 proposal in less than a second) costs
a few cents (specifically $1/hr)

● To break the 1018 proposal in an hour costs $2100

It is not easy to conclude whether these costs are high enough to consider the wallet satisfyingly
secure or not. A profound criterion would be the possible relative profit of an attacker, so in the
case of $2100 cost for a transaction one could argue that a rational player would attack only if
the gains exceed that cost. However, it is not trivial to reason about the incentives an attacker
could have, which may be irrelevant to the immediate profits themselves. For example, consider
an attacker that has huge indirect profits from disputing ONE Wallet’s security.

Solution 2: Complex Hash Function

Overview
The core idea of this solution is to disrupt a brute-force attack by using a memory-hard hash
function. The document proposes using argon2, for which it is argued that no custom ASIC
exists and that it performs well for a small number of operations (eg. 106 needed by the client
following solution 1).

Analysis
As with solution 1, employing a memory-hard hash function (and possibly increasing the brute
force search space to 1012 or 1018) may prohibit adversaries with limited capabilities, but does
not protect against adversaries that can rent hashing power. As such, the time and cost required
to successfully attack a wallet is not much and, with hardware improving and more mining rental
options being provided, we expect it not to be impossible to bypass this solution.

Common Prefix - Preliminary Security Analysis of ONEWallet 14

https://www.crypto51.app/

Importantly, the document proposes to combine this solution with solution 1, but does not offer
any estimations on the time/effort needed for the client to perform the 106 computations that this
would take. To understand the performance needed and confirm whether this solution is
realistic, the (currently somewhat vague) description should include concrete numbers regarding
commercial hardware.

Time-Cost evaluation
According to https://www.miningrigrentals.com/rigs/argon2dchukwa for argon2, renting 1MH/day
costs roughly 0.0015 BTC (i.e., $45 when 1BTC = $30,000) and a machine typically gives
3.6MH/s, so:

● To break the standard wallet (i.e., compute 106 hashes) costs 45$ and can be done in a
day (using a single machine) or less (by renting multiple machines)

● To break the 1012 proposal costs $6,165,000 and can be done in 77 hours or less
● It is not possible (under the current available for-rental equipment) to break the 1018

proposal

Solution 3: Scrambled Memory Layout

Overview
The core idea of this solution is to store each leaf of the Merkle tree in specific locations of the
client’s memory, which are easy to find only if one has access to the OTP.

Analysis
As the document acknowledges, “this technique is the least straightforward”. Indeed, it is also
the least well-defined, so it is unclear what assumptions it has and what guarantees it provides.

The first glaring omission is the adversarial assumptions. Particularly, it is unclear what kind of
access the attacker is assumed to have. For instance, the proposal does not offer any extra
security, if:

● the attacker can access the input devices (thus obtain the OTP) and the memory
● the attacker can control the client’s software; in that case, the attacker can simply obtain

the OTP at the same time as the software
Without a clear description of the adversarial assumptions, it is not possible to evaluate the
given estimations.

The second omission is regarding the implementation requirements. Specifically, it is unclear
whether this proposal can be implemented on commercial hardware or specialized modules and
how computationally-intensive it is.

Common Prefix - Preliminary Security Analysis of ONEWallet 15

https://www.miningrigrentals.com/rigs/argon2dchukwa

Finally, the document acknowledges that solution 2 cannot be combined with this one (“we
cannot use the techniques in Section II by replacing the hash function to a complex one, since
the hash function must be supported on blockchain as well and must be economical and fast
enough to compute on blockchain”), so the final sentence (“this technique can be composed
with the techniques in Part I or II or both”) is incorrect.

Conclusion
There are three core issues with the proposals of this document:

1. A lack of assumptions regarding the adversary’s control of the client and/or
computational (or other) power. The document assumes only a few ad-hoc adversaries;
instead, an assumption-based analysis would ensure that the security guarantees are as
described and/or needed.

2. A lack of computational requirements from the part of the client. All 3 proposals require
the client to either perform multiple (106) or complex computations (specific memory
retrieval). It is unclear how much time and computational effort these solutions require
and whether they can be run on low-performance and/or commercial hardware.

3. A specific protocol description for the case of requiring 2 OTPs from the user. This
solution increases the search space for the adversary the most (~1018) but, given the
limitations of Google Authenticator, it is possible that new security implications come with
this solution.

From our understanding at this stage, it appears that this proposal offers some interesting
insights towards making ONE wallet secure even with a compromised client. However, a more
detailed description should be provided defining the adversarial assumptions and
implementation specifics wherever needed. Further analysis should be performed before
adopting one or more of these solutions for the next version of the wallet.

Common Prefix - Preliminary Security Analysis of ONEWallet 16

