
Mysten Fastcrypto BLS12381 Audit

Shresth Agrawal1,2 Petros Angelatos1,3
Pyrros Chaidos1,4

1 Common Prefix
2 Technical University of Munich

3 National Technical University of Athens
4 University of Athens

April 21, 2023
Last update: September 11, 2023

1 Overview

1.1 Introduction
Mysten Labs commissioned Common Prefix to conduct an audit of the
BLS12381 [4] implementation within their fastcrypto library. The pri-
mary objectives of the audit were to assess the security and adherence to
relevant standards and investigate performance optimizations and code
quality improvements for this specific implementation. Fastcrypto is a
Rust-based library that implements selected cryptographic primitives and
also serves as a wrapper for several carefully chosen cryptography crates,
ensuring optimal performance and security for Mysten Labs’ software so-
lutions, including their blockchain platform, Sui [7, 10]

BLS [2,3,5] signatures are known for their efficient aggregation proper-
ties, which can significantly reduce the size of signature sets in blockchain
protocols and improve overall scalability. The fastcrypto BLS12381 im-
plementation primarily serves as a wrapper around the blst library, which
is written in C and Assembly. The blst library has been extensively au-
dited [9] and is currently used in production by several major blockchains,
such as Ethereum [6,8, 12].

This audit report thoroughly evaluates the usage of the BLS12381 im-
plementation within the fastcrypto library, specifically in the context of
the Sui blockchain, as opposed to general-purpose usage (Cf. Section 3.1).
The audit findings are categorized by severity, and we provide proposed
solutions for each identified issue. Our evaluation primarily focuses on
the code’s security, efficiency, and reliability. It’s important to note that
this audit is limited in scope to the code associated with non-experimental
features and does not encompass the library’s dependencies or other com-
ponents.

https://commonprefix.com
https://github.com/MystenLabs/fastcrypto
https://github.com/supranational/blst
https://research.nccgroup.com/wp-content/uploads/2021/01/NCC_Group_EthereumFoundation_ETHF002_Report_2021-01-20_v1.0.pdf
https://research.nccgroup.com/wp-content/uploads/2021/01/NCC_Group_EthereumFoundation_ETHF002_Report_2021-01-20_v1.0.pdf
https://github.com/ethereum/consensus-specs.git

1.2 Audited Files

1. [25c36d5c] fastcrypto/src/bls12381/mod.rs (excluding experimental
code between lines 208 - 272).

1.3 Disclaimer

This audit does not give any warranties on the bug-free status of the
given code. The evaluation result does not guarantee the nonexistence of
any further findings of security issues. This audit report is intended to be
used for discussion purposes only. We always recommend proceeding with
several independent audits and a public bug bounty program to ensure
the security of the project.

1.4 Executive Summary

Overall the BLS12381 implementation within the fastcrypto library is
a well-crafted, secure, and optimized wrapper around the blst library.
The blst library itself is heavily audited [9] and battle-tested in publicly
deployed blockchain systems e.g., Ethereum [8]. Throughout the audit
process, we identified several issues, all of which were either low or infor-
mational in severity.

Notably, the implementation of the verify_different_msg function
(L-06) does not intrinsically enforce the requirement for message unique-
ness as stipulated by the RFC specification. This can enable a rogue key
attack [2]. Similarly, the verify function (L-07) for a common message
does not list or enforce any particular requirements on the keys. Both of
these issues are of low severity as Sui uses Proofs of Possession, which
mitigates both problems.

Additionally, all the verification functions presuppose a pre-validation
of the public key (L-01). While such a strategy aligns with the imple-
mentation specifics of the Narwhal protocol, it might not be immediately
apparent to users in a broader context, thus potentially leading to misuse.

Discrepancies in the implementation of equality and ordering traits for
BLS12381PublicKey, BLS12381PrivateKey, BLS12381Signature, and
BLS12381AggregateSignature were also observed. While these discrep-
ancies do not pose a direct security threat, they may yield unexpected
results when consistency between these traits is assumed.

In summary, the fastcrypto BLS12381 implementations have been
found to be of high quality. Some of the issues mentioned above might
lead to more severe problems if the library is used in a context outside

2

https://github.com/MystenLabs/fastcrypto/blob/25c36d5c0f41245a473d9ea990269eddcbf2d48a/fastcrypto/src/bls12381/mod.rs

the Narwhal consensus protocol [7] and the Sui blockchain [10]. However,
these issues can be easily addressed.

1.5 Findings Severity Breakdown

The findings are classified under the following severity categories accord-
ing to the impact and the likelihood of an attack.

Level Description
High Logical errors or implementation bugs that are easily

exploited. In the case of contracts, such issues can lead
to any kind of loss of funds.

Medium Issues that may break the intended logic, is a deviation
from the specification, or can lead to DoS attacks.

Low Issues harder to exploit (exploitable with low proba-
bility), issues that lead to poor performance, clumsy
logic, or seriously error-prone implementation.

Informational Advisory comments and recommendations that could
help make the codebase clearer, more readable, and
easier to maintain.

2 Findings

2.1 High

None found.

2.2 Medium

None found.

2.3 Low

L-01: Overflow in get_random_scalar calculation
Affected Code: fastcrypto/src/bls12381/mod.rs (line 286)
Summary: The current implementation creates an overflow when

BLS_BATCH_RANDOM_SCALAR_LENGTH is set to 128. This occurs because
the existing calculation involves a left shift operation on a 64-bit in-
teger requiring a 65th-bit position.

Suggestion: Replace the current calculation with one that uses a larger
numeric type to prevent overflow.

3

https://github.com/MystenLabs/fastcrypto/blob/120b30ca9980c87d1e12f28c3632613418b8777b/fastcrypto/src/bls12381/mod.rs#L286

Suggested Fix: --- a/fastcrypto/src/bls12381/mod.rs
+++ b/fastcrypto/src/bls12381/mod.rs
@@ -283,7 +283,7 @@ fn get_random_scalar<Rng:

AllowedRng>(rng: &mut Rng) -> blst_scalar {
vals[1] = rng.next_u64();

// Reject zero as it is used for
multiplication.

- let vals1_lsb = vals[1] & ((1 <<
(BLS_BATCH_RANDOM_SCALAR_LENGTH - 64)) - 1);

+ let vals1_lsb = vals[1] & (((1u128 <<
(BLS_BATCH_RANDOM_SCALAR_LENGTH - 64)) - 1) as u64);

if vals[0] | vals1_lsb != 0 {
break;

}

This fix performs the bit shift operation in a u128 type and then casts
the result back to u64.

Status: Resolved [096c23696]

L-02: get_random_scalars function returns an array of size 1
when n is set to 0
Affected Code: fastcrypto/src/bls12381/mod.rs (line 309)
Summary: The get_random_scalars function returns an array of size

one even if the input parameter n is set to 0. Although the exist-
ing code cannot be exploited, it could potentially lead to unintended
behavior in future usage of the function.

Suggestion: Consider adding a check for n being 0, and panicing with an
error message. Alternatively, modify the get_random_scalars func-
tion to return an empty array when n is set to 0, ensuring that the
output array size matches the input parameter. This will help prevent
any potential future misuse of the function.

Status: Resolved [096c23696]

L-03: Public Key Validation in Verification Functions
Affected Code:

• fastcrypto/src/bls12381/mod.rs (line 196)
• fastcrypto/src/bls12381/mod.rs (line 641)
• fastcrypto/src/bls12381/mod.rs (line 661)
• fastcrypto/src/bls12381/mod.rs (line 682)

4

https://github.com/MystenLabs/fastcrypto/commit/096c23696c987f97e0e2b8e1a94c9e949458724d
https://github.com/MystenLabs/fastcrypto/blob/120b30ca9980c87d1e12f28c3632613418b8777b/fastcrypto/src/bls12381/mod.rs#L309
https://github.com/MystenLabs/fastcrypto/commit/096c23696c987f97e0e2b8e1a94c9e949458724d
https://github.com/MystenLabs/fastcrypto/blob/120b30ca9980c87d1e12f28c3632613418b8777b/fastcrypto/src/bls12381/mod.rs#L196
https://github.com/MystenLabs/fastcrypto/blob/120b30ca9980c87d1e12f28c3632613418b8777b/fastcrypto/src/bls12381/mod.rs#L641
https://github.com/MystenLabs/fastcrypto/blob/120b30ca9980c87d1e12f28c3632613418b8777b/fastcrypto/src/bls12381/mod.rs#L661
https://github.com/MystenLabs/fastcrypto/blob/120b30ca9980c87d1e12f28c3632613418b8777b/fastcrypto/src/bls12381/mod.rs#L682

Summary: The current implementation of BLS12381PublicKey.verify,
BLS12381AggregateSignature.verify,
BLS12381AggregateSignature.verify_different_msg,
and BLS12381AggregateSignature.batch_verify do not validate
the public key and expect it to be validated before the functions are
called. A TODO comment in the code mentions that the current im-
plementation of Narwhal [7] (the consensus protocol of the Sui block-
chain [10]) uses several serialization/deserialization of validated public
keys and that a refactor is planned to enable validation during dese-
rialization. This can lead to misuse of these functions by fastcrypto
users other than the Narwhal consensus implementations itself.

Suggestion: Until the refactor is done, we suggest introducing a new
type UnvalidatedBLS12381PublicKey which wraps BLS12381PublicKey.
UnvalidatedBLS12381PublicKey should have an assume_valid func-
tion which returns an unvalidated BLS12381PublicKey, and an into_valid
function, which returns a validated BLS12381PublicKey. By default,
the deserialization of BLS12381PublicKey should always be validated.
Here is a rough code snippet for the above suggestion:

struct UnvalidatedBLS12381PublicKey(BLS12381PublicKey);

impl UnvalidatedBLS12381PublicKey {
/// Asume that this key is validated without

checking.
pub fn assume_valid(self) -> BLS12381PublicKey {

self.0
}

pub fn into_valid(self) -> Result<BLS12381PublicKey,
FastCryptoError> {
self.0.pubkey.validate().map_err(|_e|

FastCryptoError::InvalidInput)?;
self.0

}
}

// TODO: add fast deserialization of
UnvalidatedBLS12381PublicKey which doesn't validate

// TODO: update the deserialization of
BLS12381PublicKey to always validate.

Status: Acknowledged

5

https://github.com/MystenLabs/fastcrypto/blob/120b30ca9980c87d1e12f28c3632613418b8777b/fastcrypto/src/bls12381/mod.rs#L183

L-04: Inconsistency between PartialEq trait implementations for
different BLS12381 structures
Affected Code:

• fastcrypto/src/bls12381/mod.rs (line 102)
• fastcrypto/src/bls12381/mod.rs (line 322)
• fastcrypto/src/bls12381/mod.rs (line 390)
• fastcrypto/src/bls12381/mod.rs (line 545)

Summary: The current implementation of PartialEq trait for differ-
ent BLS12381 structures are inconsistent. BLS12381PublicKey and
BLS12381AggregateSignature use the blst implementation for PartialEq,
while BLS12381PrivateKey and BLS12381Signature first convert to
byte representation and then compare. This is especially problematic
for BLS12381AggregateSignature and BLS12381Signature, which
have different implementations for PartialEq even though they wrap
the same blst object.

Suggestion: Use the blst implementation of PartialEq for all structures
except PrivateKey, as blst does not have a PartialEq implementa-
tion for it.

Status: Resolved [096c23696]

L-05: Inconsistency between PartialEq, PartialOrd, and Ord trait
implementations for BLS12381PublicKey

Affected Code:
• fastcrypto/src/bls12381/mod.rs (line 102)
• fastcrypto/src/bls12381/mod.rs (line 110)
• fastcrypto/src/bls12381/mod.rs (line 117)

Summary: The PartialOrd and Ord trait implementations for
BLS12381PublicKey are inconsistent with the PartialEq implemen-
tation, as the former converts the underlying blst::PublicKey to
bytes and perform byte-level comparison, while the latter directly
uses the underlying blst implementation. The Rust documentation
explicitly states that implementations of PartialOrd and Ord must
be consistent with PartialEq.

Suggestion: Do not provide an implementation for the PartialOrd and
Ord traits from the library to avoid any unexpected behavior. If needed,
a byte-level comparison can be implemented by the application itself.

Status: Acknowledged

6

https://github.com/MystenLabs/fastcrypto/blob/120b30ca9980c87d1e12f28c3632613418b8777b/fastcrypto/src/bls12381/mod.rs#L102
https://github.com/MystenLabs/fastcrypto/blob/120b30ca9980c87d1e12f28c3632613418b8777b/fastcrypto/src/bls12381/mod.rs#L322
https://github.com/MystenLabs/fastcrypto/blob/120b30ca9980c87d1e12f28c3632613418b8777b/fastcrypto/src/bls12381/mod.rs#L390
https://github.com/MystenLabs/fastcrypto/blob/120b30ca9980c87d1e12f28c3632613418b8777b/fastcrypto/src/bls12381/mod.rs#L545
https://github.com/MystenLabs/fastcrypto/commit/096c23696c987f97e0e2b8e1a94c9e949458724d
https://github.com/MystenLabs/fastcrypto/blob/120b30ca9980c87d1e12f28c3632613418b8777b/fastcrypto/src/bls12381/mod.rs#L102
https://github.com/MystenLabs/fastcrypto/blob/120b30ca9980c87d1e12f28c3632613418b8777b/fastcrypto/src/bls12381/mod.rs#L110
https://github.com/MystenLabs/fastcrypto/blob/120b30ca9980c87d1e12f28c3632613418b8777b/fastcrypto/src/bls12381/mod.rs#L117
https://doc.rust-lang.org/std/cmp/trait.PartialEq.html

L-06: verify_different_msg function should check for message
uniqueness
Affected Code: fastcrypto/src/bls12381/mod.rs (line 661)
Summary: The current implementation of the verify_different_msg

function does not check for the uniqueness of the messages, as required
by the RFC section 3.1.1 (AggregateVerify) [4]. The function relies on
the blst::Signature.aggregate_verify function, which does not
perform this check, as indicated by a “TODO” comment in the blst
library. This can lead to rogue key attacks [2]. However, this is not
a problem in the context of Sui blockchain as Proofs of Possession
(PoP) is used.

Suggestion: Update the verify_different_msg function to ensure that
all messages passed to it are unique in accordance with the RFC spec-
ification.

Suggested Fix:
--- a/fastcrypto/src/bls12381/mod.rs
+++ b/fastcrypto/src/bls12381/mod.rs
@@ -30,6 +30,7 @@ use fastcrypto_derive::{SilentDebug,

SilentDisplay};
use once_cell::sync::OnceCell;
use std::{

borrow::Borrow,
+ collections::HashSet,

fmt::{self, Debug, Display},
mem::MaybeUninit,
str::FromStr,

@@ -663,6 +664,11 @@ impl AggregateAuthenticator for
BLS12381AggregateSignature {

pks: &[<Self::Sig as Authenticator>::PubKey],
messages: &[&[u8]],

) -> Result<(), FastCryptoError> {
+ let mut unique_msgs: HashSet<&[u8]> =

HashSet::with_capacity(messages.len());
+ unique_msgs.extend(messages.iter());
+ if unique_msgs.len() != messages.len() {
+ return Err(FastCryptoError::InvalidInput);
+ }

// Validate signatures but not public keys
which the user must validate before calling
this.

7

https://github.com/MystenLabs/fastcrypto/blob/120b30ca9980c87d1e12f28c3632613418b8777b/fastcrypto/src/bls12381/mod.rs#L661
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-bls-signature-05#name-aggregateverify
https://github.com/supranational/blst/blob/d3f9bd3eff6d4795fbba7d600e354c40868b195e/bindings/rust/src/lib.rs#L936

let result = self
.sig

Status: Acknowledged with additional comments on the code to stress
the assumptions [096c23696]

L-07: verify function should specify semantics and security as-
sumptions
Affected Code: fastcrypto/src/bls12381/mod.rs (line 641)
Summary: The current implementation of the verify function uses

blst’s fast_aggregate_verify to perform the actual verification. This
can be unsafe unless the public keys are known to be honestly gen-
erated. In the proposed draft [4], fast_aggregate_verify is only
described for BLS augmented with Proofs of Possession (PoP) which
explicitly harden BLS against rogue key attacks. Without PoPs or
a similar assumption, an adversary can produce aggregate signatures
for a set containing the keys of honest users without their knowledge
or cooperation by using adversarial (rogue) public keys designed to
attack the users in mind. This is not a problem in the context of Sui
blockchain as PoPs are used.

Suggestion: Whilst explicit proofs of possession are not the only means
to counteract rogue key attacks5, it needs to be made clear that (1)
the function is only safe to use when specific assumptions are met and
(2) the relevant assumptions should be made explicit.
As additional precautions against unsafe use of the primitives by fu-
ture developers we also suggest
• Changing the function name to draw caution to the additional

requirements.
• Refactoring the code so that the types of aggregates of signatures

produced by keys that are not known to be hardened against rogue
key attacks are not valid arguments.

Status: Acknowledged with additional comments on the code to stress
the assumptions [096c23696]

2.4 Informational

I-01: Simplify usage of OneCell with get_or_init instead of get_or_try_init

Affected Code:
5cf. the MSKR research paper [1], or implicit PoPs via an application-specific reg-

istration process

8

https://github.com/MystenLabs/fastcrypto/commit/096c23696c987f97e0e2b8e1a94c9e949458724d
https://github.com/MystenLabs/fastcrypto/blob/120b30ca9980c87d1e12f28c3632613418b8777b/fastcrypto/src/bls12381/mod.rs#L641
https://github.com/MystenLabs/fastcrypto/commit/096c23696c987f97e0e2b8e1a94c9e949458724d

• fastcrypto/src/bls12381/mod.rs (line 137)
• fastcrypto/src/bls12381/mod.rs (line 348)
• fastcrypto/src/bls12381/mod.rs (line 407)
• fastcrypto/src/bls12381/mod.rs (line 568)

Summary: The current implementation uses get_or_try_init with OneCell,
which expects that the initialization function passed to it might re-
turn a Result.Err. However, in all calls to get_or_try_init, an
explicit Ok(something) is returned. This can be simplified by using
get_or_init instead and not wrapping the object in Ok.

Suggestion: Consider replacing get_or_try_init with get_or_init in
the affected code to simplify the calls and remove the unnecessary
wrapping of the object in Ok.

Suggested Fix: Here is an example fix

--- a/fastcrypto/src/bls12381/mod.rs
+++ b/fastcrypto/src/bls12381/mod.rs
@@ -345,8 +345,7 @@ impl Drop for BLS12381PrivateKey {
impl AsRef<[u8]> for BLS12381PrivateKey {

fn as_ref(&self) -> &[u8] {
self.bytes

- .get_or_try_init::<_, eyre::Report>(||
Ok(self.privkey.to_bytes()))

- .expect("OnceCell invariant violated")
+ .get_or_init(|| self.privkey.to_bytes())

}
}

Status: Resolved [096c23696]

3 Supplementary Information

3.1 Usage Outside the Context of the Sui Blockchain

Usage of the BLS12381 implementation outside the context of the Sui
blockchain should be done carefully. While some of the previously dis-
cussed issues were categorized as low severity within the Sui blockchain
due to specific security measures and design choices, they may pose higher
severity risks in other environments. Specifically, the following points
should be taken into account:

The issue L-06 pertains to the lack of enforcement of message unique-
ness in the verify_different_msg function, which is currently consid-
ered low severity within the Sui blockchain because of the use of proofs

9

https://github.com/MystenLabs/fastcrypto/blob/120b30ca9980c87d1e12f28c3632613418b8777b/fastcrypto/src/bls12381/mod.rs#L137
https://github.com/MystenLabs/fastcrypto/blob/120b30ca9980c87d1e12f28c3632613418b8777b/fastcrypto/src/bls12381/mod.rs#L348
https://github.com/MystenLabs/fastcrypto/blob/120b30ca9980c87d1e12f28c3632613418b8777b/fastcrypto/src/bls12381/mod.rs#L407
https://github.com/MystenLabs/fastcrypto/blob/120b30ca9980c87d1e12f28c3632613418b8777b/fastcrypto/src/bls12381/mod.rs#L568
https://github.com/MystenLabs/fastcrypto/commit/096c23696c987f97e0e2b8e1a94c9e949458724d

of possession. However, when utilizing the library outside the Sui block-
chain, it becomes crucial to ensure message uniqueness to prevent poten-
tial rogue key attacks.

Similarly, regarding issue L-07, which highlights the lack of specified
semantics and security assumptions in the verify function, it is recom-
mended to use the verify function only with proof of possession or a
similar assumption on the public key.

Another issue, L-03, relates to the lack of public key validation on de-
serialization. While this is currently managed within the Sui blockchain
by handling invalidated keys carefully. Proper public key validation on
deserialization should be performed if the library is used outside the con-
text of Sui.

Reviewing all the issues mentioned in this report and assessing their
relevance and impact on your specific use case when using the library
outside the Sui blockchain is generally recommended.

In conclusion, while the fastcrypto BLS12381 implementation has
been found to be generally safe to use, caution should be exercised when
employing the library outside the context of the Sui blockchain.

3.2 Zero Splitting Attack

A related notion to rogue key attacks is that of “zero-splitting” [11] at-
tacks where a number of adversarial keys are set so as to sum to zero,
which in turn makes their aggregate signatures exhibit non-standard
properties, such as being valid for multiple different messages. This does
not contradict security definitions describing forgeries but may prove
problematic for higher-level protocols. PoPs and standard aggregation
with different messages are explicitly not sufficient to prevent them, as
checking for keys with a particular sum is expensive to do preemptively.
The approach of MSKR [1] may be more fruitful but lies outside the scope
of this audit.

4 Acknowledgement

The authors of the report would like to thank Dionysis Zindros for giving
helpful feedback on the report.

References

1. F. Baldimtsi, K. K. Chalkias, F. Garillot, J. Lindstrom, B. Riva, A. Roy, A. Son-
nino, P. Waiwitlikhit, and J. Wang. Subset-optimized bls multi-signature with

10

key aggregation. Cryptology ePrint Archive, Paper 2023/498, 2023. https:
//eprint.iacr.org/2023/498.

2. D. Boneh, M. Drijvers, and G. Neven. Compact multi-signatures for smaller block-
chains. In T. Peyrin and S. Galbraith, editors, Advances in Cryptology – ASI-
ACRYPT 2018, pages 435–464, Cham, 2018. Springer International Publishing.

3. D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and verifiably en-
crypted signatures from bilinear maps. pages 416–432, 2003.

4. D. Boneh, S. Gorbunov, R. S. Wahby, H. Wee, C. A. Wood, and Z. Zhang. BLS Sig-
natures. Internet-Draft draft-irtf-cfrg-bls-signature-05, Internet Engineering Task
Force, June 2022. Work in Progress.

5. D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing.
17(4):297–319, Sept. 2004.

6. V. Buterin et al. A next-generation smart contract and decentralized application
platform. white paper, 2014.

7. G. Danezis, L. Kokoris-Kogias, A. Sonnino, and A. Spiegelman. Narwhal and tusk:
a dag-based mempool and efficient bft consensus. pages 34–50, 03 2022.

8. E. Foundation. Ethereum consensus specifications.
9. N. Group. Blst cryptographic implementation review, January 2021.

10. M. Labs. The sui smart contract platform.
11. N. T. M. Quan. 0. Cryptology ePrint Archive, Paper 2021/323, 2021. https:

//eprint.iacr.org/2021/323.
12. G. Wood. Ethereum: A secure decentralised generalised transaction ledger. Ethe-

reum Project Yellow Paper, 151:1–32, 2014.

11

https://eprint.iacr.org/2023/498
https://eprint.iacr.org/2023/498
https://eprint.iacr.org/2021/323
https://eprint.iacr.org/2021/323

About Common Prefix

Common Prefix is a blockchain research, development, and consulting
company consisting of a small number of scientists and engineers spe-
cializing in many aspects of blockchain science. We work with industry
partners who are looking to advance the state-of-the-art in our field to
help them analyze and design simple but rigorous protocols from first
principles, with provable security in mind.

Our consulting and audits pertain to theoretical cryptographic proto-
col analyses as well as the pragmatic auditing of implementations in both
core consensus technologies and application layer smart contracts.

12

	 Mysten Fastcrypto BLS12381 Audit
	References

