
Mysten Fastcrypto BLS12381 Group Audit

Shresth Agrawal1,2 Pyrros Chaidos1,3

1 Common Prefix
2 Technical University of Munich

3 University of Athens

November 15, 2023
Last update: January 18, 2024

1 Overview

1.1 Introduction

Mysten Labs commissioned Common Prefix to audit the BLS-381 group
implementation within their fastcrypto library. The primary objectives of
the audit were to assess the security, adherence to the relevant publica-
tions, and also investigate performance optimizations, and code quality
improvements to these particular implementations. Fastcrypto is a Rust-
based library that implements selected cryptographic primitives and also
serves as a wrapper for several carefully chosen cryptography crates, en-
suring optimal performance and security for Mysten Labs’ software solu-
tions, including their blockchain platform, Sui.

This audit report evaluates the BLS-381 group implementation within
the fastcrypto library. We have audited the code for security, efficiency,
and reliability. The scope of this audit was limited to the fastcrypto im-
plementation and did not extend to the library’s dependencies or any
downstream applications.

1.2 Audited Files

1. [a63b6996] fastcrypto/src/groups/bls12381.rs

1.3 Disclaimer

This audit does not give any warranties on the bug-free status of the given
code, i.e., the evaluation result does not guarantee the nonexistence of
any further findings of security issues. This audit report is intended to be
used for discussion purposes only. We always recommend proceeding with
several independent audits and a public bug bounty program to ensure
the security of the project.

https://github.com/MystenLabs/fastcrypto
https://github.com/MystenLabs/fastcrypto/blob/a63b6996298d78184cf6573de629d46553f66bae/fastcrypto/src/groups/bls12381.rs


The scope of the audit was constrained exclusively to the Fastcrypto
wrapper code, with no examination conducted on its associated depen-
dencies. Furthermore, the audit does not encompass any reference string
generation functionality in terms of code or execution.

1.4 Executive Summary

Overall, the BLS-381 group implementation is of very high quality and
adhering to Rust’s best practices.

For most complex group operations the code relies on the upstream
BLST library for optimized implementations. The code implements some
custom scalar-element multiplications and serializations.

Our findings mostly concern unclear semantics and documentation of
the blst_fr type, the non unique byte representation of FP12 elements,
and code refactoring for safer lifetimes in unsafe type conversions.

1.5 Findings Severity Breakdown

The findings are classified under the following severity categories accord-
ing to the impact and the likelihood of an attack.

Level Description
High Logical errors or implementation bugs that are easily

exploited. In the case of contracts, such issues can lead
to any kind of loss of funds.

Medium Issues that may break the intended logic, are devia-
tions from the specification, or can lead to DoS at-
tacks.

Low Issues harder to exploit (exploitable with low proba-
bility), can lead to poor performance, clumsy logic, or
seriously error-prone implementation.

Informational Advisory comments and recommendations that could
help make the codebase clearer, more readable, and
easier to maintain.

2 Findings

2.1 High

None Found.

2



2.2 Medium
M01: Non unique deserialization of GTElement.
Affected Code: src/groups/bls12381.rs (line 539)
Summary: GTElement::from_byte_array allows for multiple byte represen-

tations to deserialize to the same element. This is caused due to the
use of blst_fp_from_bendian which performs a mod reduction for byte
array with value greater than p. This can lead to undefined behaviour
for the higher level usage of the library which expects unique byte
representation.

Suggestion: In the inner most loop (line 550) check that each byte ar-
ray is in cannonical representation of the FP element and return an
error if not. This can be done by checking that the byte array is less
than p or by creating a cannonical big endian representation (using
blst_bendian_from_fp) of deserialized element and comparing it to the
input byte array.

Status: Resolved [5afe77d3 4dfb26f5]

2.3 Low
None Found.

2.4 Informational
I-01: Undefined lifetime of blst point slices in multi_scalar_mul.
Affected Code: src/groups/bls12381.rs (lines 157,345)
Summary: The multi_scalar_mul implementations for both G1Element and

G2Element perform unsafe type conversion from &[Self] to &[blst_p1]
or &[blst_p2] respectively. The lifetime of the output slice is not well
defined and is inferred from its usage. It is advisable to tie the lifetime
of the input slice to the output slice.

Suggestion: A potential way to do this is by wrapping the unsafe com-
ponent into a seperate function. The rust compiler implicitly ties the
lifetime of the input parameters to the output for such function.

1 fn from_blst_p1_slice(points: &[G1Element]) -> &[blst_p1] {
2 // SAFETY: the cast from `&[G1Element]` to `&[blst_p1]` is

safe because
3 // G1Element is a transparent wrapper around blst_p1. The

lifetime of
4 // output slice is the same as the input slice.
5 unsafe { std::slice::from_raw_parts(points.as_ptr() as

*const blst_p1, points.len()) }
6 }

3

https://github.com/MystenLabs/fastcrypto/blob/a63b6996298d78184cf6573de629d46553f66bae/fastcrypto/src/groups/bls12381.rs
https://github.com/MystenLabs/fastcrypto/blob/a63b6996298d78184cf6573de629d46553f66bae/fastcrypto/src/groups/bls12381.rs#L539
https://github.com/MystenLabs/fastcrypto/blob/a63b6996298d78184cf6573de629d46553f66bae/fastcrypto/src/groups/bls12381.rs#L550
https://github.com/MystenLabs/fastcrypto/pull/714/commits/5afe77d3d9c0d3005e4e1b716b09a67bb1af349c
https://github.com/MystenLabs/fastcrypto/pull/714/commits/4dfb26f594636aa3c8729c8935f1d3a67a469b3e
https://github.com/MystenLabs/fastcrypto/blob/a63b6996298d78184cf6573de629d46553f66bae/fastcrypto/src/groups/bls12381.rs
https://github.com/MystenLabs/fastcrypto/blob/a63b6996298d78184cf6573de629d46553f66bae/fastcrypto/src/groups/bls12381.rs#L157
https://github.com/MystenLabs/fastcrypto/blob/a63b6996298d78184cf6573de629d46553f66bae/fastcrypto/src/groups/bls12381.rs#L345


Status: Resolved [fd811174, c50c9f07]

I-02: Scalar type is sparsely documented.
Affected Code: src/groups/bls12381.rs (lines 54,747)
Summary: The Scalar type, implemented as blst_fr is not adequately

documented. The underlying blst codebase provides two representa-
tion for scalars, blst_fr and blst_scalar. The blst library uses blst_scalar
for all the frontend operations (e.g. using it for bls private key) while
blst_fr is used for all the low level operations and arithmetic. The
fastcrypto implementation uses blst_fr as the Scalar type but also
performs several type conversions from/to blst_scalar. The codebase
doesn’t document why one type is used over the other at several places.
Another instance of this can be seen in the “magic” value of BLST_FR_ONE.
Whilst the code is correct, this leaves the potential for future main-
tainability issues and may also impact downstream development.

Suggestion: Add documentation for the usage of blst_fr. The documen-
tation provided by the blst codebase is very sparse. Chapter 14 Para-
graph 14.3.2 of [MVOV18] is a good reference which provides the main
motivation for using Montgomery forms on which blst_fr is based. We
note that some of the type choices are restricted by methods exposed
by the blst codebase which eliminates the idea of potential refactor
which only uses one of the two scalar types.

Status: Acknowledged

I-03: Multiple type conversions in GTElement mul.
Affected Code: src/groups/bls12381.rs (line 480)
Summary: Currently the mul implementation for GTElement performs all

the scalar arithmetic in blst_fr. This increases the complexity of the
implementation (requires several type conversions to blst_scalar and
usage of unsafe functions). The implementation is simplified if the
scalar arithmetic is performed in blst_scalar instead.

Suggestion: Below is a reference mul implementation using blst_scalar.
1 fn mul(self, rhs: Scalar) -> Self {
2 let mut n = blst_scalar::default();
3 unsafe{
4 blst_scalar_from_fr(&mut n, &rhs.0);
5 }
6

7 let bytes_len = size_in_bytes(&n);
8 let bits_len = size_in_bits(&n, bytes_len);

4

https://github.com/MystenLabs/fastcrypto/pull/714/commits/fd811174d79f9bcae5afc03864712540c06b2ade
https://github.com/MystenLabs/fastcrypto/pull/714/commits/c50c9f07721247fd25f9888d3c178dd237f5d695
https://github.com/MystenLabs/fastcrypto/blob/a63b6996298d78184cf6573de629d46553f66bae/fastcrypto/src/groups/bls12381.rs
https://github.com/MystenLabs/fastcrypto/blob/a63b6996298d78184cf6573de629d46553f66bae/fastcrypto/src/groups/bls12381.rs#L54
https://github.com/MystenLabs/fastcrypto/blob/a63b6996298d78184cf6573de629d46553f66bae/fastcrypto/src/groups/bls12381.rs#L747
https://github.com/MystenLabs/fastcrypto/blob/a63b6996298d78184cf6573de629d46553f66bae/fastcrypto/src/groups/bls12381.rs
https://github.com/MystenLabs/fastcrypto/blob/a63b6996298d78184cf6573de629d46553f66bae/fastcrypto/src/groups/bls12381.rs#L480


9

10 if bits_len == 0 {
11 return Self::zero();
12 }
13 if bits_len == 1 {
14 return self;
15 }
16

17 let mut y: blst_fp12 = blst_fp12::default();
18 let mut x = self.0;
19

20 for i in 0..(bits_len - 1) {
21 // Get the bit at the ith position.
22 if n.b[i / 8] & (1 << (i % 8)) == 1 {
23 y *= x;
24 }
25 unsafe {
26 blst_fp12_sqr(&mut x, &x);
27 }
28 }
29 y *= x;
30 Self::from(y)
31 }

We note that the above code doesn’t effect the performance of the
implementation as the bottleneck of the operation is the FP12 multi-
plications.

Status: Acknowledged

5



References

MVOV18. Alfred J Menezes, Paul C Van Oorschot, and Scott A Vanstone. Handbook
of applied cryptography. CRC press, 2018.

6



About Common Prefix

Common Prefix is a blockchain research, development, and consulting
company consisting of a small number of scientists and engineers spe-
cializing in many aspects of blockchain science. We work with industry
partners who are looking to advance the state-of-the-art in our field to
help them analyze and design simple but rigorous protocols from first
principles, with provable security in mind.

Our consulting and audits pertain to theoretical cryptographic proto-
col analyses as well as the pragmatic auditing of implementations in both
core consensus technologies and application layer smart contracts.

7


	 Mysten Fastcrypto BLS12381 Group Audit 
	References


