
Mysten Fastcrypto ECDSA Secp256r1 Audit

Shresth Agrawal1,2 Petros Angelatos1,3
Pyrros Chaidos1,4

1 Common Prefix
2 Technical University of Munich

3 National Technical University of Athens
4 University of Athens

June 08, 2023
Last update: September 11, 2023

1 Overview

1.1 Introduction

Mysten Labs commissioned Common Prefix to audit the ECDSA secp256r1
implementation within their fastcrypto library. The primary objectives of
the audit were to assess the security, adherence to the relevant RFCs, and
also investigate performance optimizations, and code quality improve-
ments to these particular implementations. Fastcrypto is a Rust-based
library that implements selected cryptographic primitives and also serves
as a wrapper for several carefully chosen cryptography crates, ensuring
optimal performance and security for Mysten Labs’ software solutions,
including their blockchain platform, Sui.

ECDSA (Elliptic Curve Digital Signature Algorithm) is a crypto-
graphic algorithm utilizing elliptic curves to generate digital signatures
[1]. It offers recoverable signatures, which allow for public key recovery
from the signature itself. The secp256r1 is a standard elliptic curve with
prime order of size 256 bits. The curve’s parameters were generated us-
ing verifiable randomness to ensure security against any special purpose
attacks or trapdoors [2].

Fastcrypto’s ECDSA secp256r1 implementation employs optimized
curve multiplication and multimultiplication techniques using precom-
putation. This approach enhances processing speed, albeit with a larger
memory footprint. This is crucial as these operations account for the ma-
jority of computation time of the verifier. The implementation relies on
p256 crate and several Arksworks crates, including ark-secp256r1, ark-
ff, ark-ec, etc., for the underlying curve point, scalar and field element
operations.

https://github.com/MystenLabs/fastcrypto
https://crates.io/crates/p256
https://github.com/arkworks-rs
https://crates.io/crates/ark-secp256r1
https://crates.io/crates/ark-ff
https://crates.io/crates/ark-ff
https://crates.io/crates/ark-ec

This audit report comprehensively evaluates the ECDSA secp256r1
implementation within the fastcrypto library. The findings are categorized
by severity, accompanied by proposed solutions for each identified issue.
We have audited the code for security, efficiency, and reliability. The scope
of this audit was limited to the ECDSA secp256r1 and its supporting fast
multiplication implementations within the Fastcrypto library and did not
extend to the library’s dependencies or other components.

1.2 Audited Files

1. [963205c6] fastcrypto/src/secp256r1/mod.rs
2. [963205c6] fastcrypto/src/secp256r1/recoverable.rs
3. [963205c6] fastcrypto/src/secp256r1/conversion.rs
4. [963205c6] fastcrypto/src/groups/secp256r1.rs
5. [963205c6] fastcrypto/src/groups/multiplier/integer_utils.rs
6. [963205c6] fastcrypto/src/groups/multiplier/windowed.rs

1.3 Disclaimer

This audit does not give any warranties on the bug-free status of the given
code, i.e., the evaluation result does not guarantee the nonexistence of
any further findings of security issues. This audit report is intended to be
used for discussion purposes only. We always recommend proceeding with
several independent audits and a public bug bounty program to ensure
the security of the project.

1.4 Executive Summary

Overall, both the ECDSA secp256r1 and the corresponding fast mul-
tiplication implementation are of very high quality, following the RFC
guidelines and adhering to Rust’s best practices.

The implementation cherry-picks and stitches components from two
existing implementations of ECDSA secp256r1, namely ark-secp256r1 and
p256. While such an approach provides the benefit of leveraging estab-
lished components, it concurrently amplifies complexity and widens the
potential for errors. An instance of this is evidenced in the
fq_arkworks_to_p256 method, intended to convert arkworks field ele-
ment to p256 field element. However, the function inadvertently returns
a p256 scalar instead of the desired p256 field element. The difference in
orders of fields would lead to unexpected value modification during the
type conversion.

2

https://github.com/MystenLabs/fastcrypto/blob/c961a01596a87e76f590c7e43aca9d57106dbbb1/fastcrypto/src/secp256r1/mod.rs
https://github.com/MystenLabs/fastcrypto/blob/c961a01596a87e76f590c7e43aca9d57106dbbb1/fastcrypto/src/secp256r1/recoverable.rs
https://github.com/MystenLabs/fastcrypto/blob/c961a01596a87e76f590c7e43aca9d57106dbbb1/fastcrypto/src/secp256r1/conversion.rs
https://github.com/MystenLabs/fastcrypto/blob/c961a01596a87e76f590c7e43aca9d57106dbbb1/fastcrypto/src/groups/secp256r1.rs
https://github.com/MystenLabs/fastcrypto/blob/c961a01596a87e76f590c7e43aca9d57106dbbb1/fastcrypto/src/groups/multiplier/integer_utils.rs
https://github.com/MystenLabs/fastcrypto/blob/c961a01596a87e76f590c7e43aca9d57106dbbb1/fastcrypto/src/groups/multiplier/windowed.rs
https://crates.io/crates/ark-secp256r1
https://crates.io/crates/p256

We identified two primary concerns regarding the Scalar implemen-
tation. First, the rand function doesn’t generate scalars uniformly ran-
dom. Second, the deserializing method allows for multiple byte arrays to
deserialize to the same scalar.

Even though it is a good practice for crypto libraries to clear the
memory storing the secret after it is used, doing so incorrectly can lead
to leakage. During the audit, we identified that the bytes of the private
key were leaked on the stack during the cleanup operation itself.

We also observed two deviations from the protocol standards. First,
the signing function for recoverable signatures did not implement the
code path to generate signatures with IDs 2 and 3. Second, the message
hash passed to the generate_k function is not reduced modulo the group
order, as required by the RFC6979 [3].

Beyond these primary concerns, our audit also pinpointed a series of
minor discrepancies, such as overlooked base cases, arithmetic overflows
in utility functions, and missing checks. We also suggested minor code
refactoring to improve the overall code quality. In conclusion, the cur-
rent iteration of the code demonstrates substantial quality, indicative of
meticulous design and development. The issues presented in the report
are minor and can be addressed easily.

1.5 Findings Severity Breakdown

The findings are classified under the following severity categories accord-
ing to the impact and the likelihood of an attack.

Level Description
High Logical errors or implementation bugs that are easily

exploited. In the case of contracts, such issues can lead
to any kind of loss of funds.

Medium Issues that may break the intended logic, are devia-
tions from the specification, or can lead to DoS at-
tacks.

Low Issues harder to exploit (exploitable with low proba-
bility), can lead to poor performance, clumsy logic, or
seriously error-prone implementation.

Informational Advisory comments and recommendations that could
help make the codebase clearer, more readable, and
easier to maintain.

3

2 Findings

2.1 High

None Found.

2.2 Medium

M-01: Scalars from rand are not uniformly random
Affected Code: src/groups/secp256r1.rs (line 98)
Summary: The rand function first generates 32 bytes uniformly at ran-

dom and then uses from_be_bytes_mod_order to convert the bytes
to a valid scalar. The mod operation reduces the resulting integer if it
is greater than the order, skewing the generated scalars’ probability.

Suggestion: Using more uniform bytes (e.g. twice the size of scalars)
would make the bias negligible. Alternatively, rejection sampling could
be used where bytes greater than the order are discarded and new ones
are sampled until valid ones are found.

Status: Resolved [10215f09]

M-02: Small scalars have multiple representations
Affected Code: src/groups/secp256r1.rs (line 112)
Summary: The from_byte_array function uses mod order

(from_le_bytes_mod_order) to convert from bytes to scalars, allow-
ing for multiple byte representations for small scalars. This may allow
trivial malleability attacks in downstream applications.

Suggestion: Enforce a canonical representation by checking that the
modular reduction is idempotent. This ensures that high byte values
cannot be used as aliases for their reduced equivalent.

Status: Resolved [c53399a2, d108330a3]

M-03: Missing code path for recoverable signatures
Affected Code: src/secp256r1/recoverable.rs (line 167)
Summary: sign_recoverable_with_hash does not implement the code

path to generate signatures with recovery_id 2 and 3.
Suggestion: The code should check if big_r.x() is high, i.e. r has

been reduced in the resulting signature. If so, set the high bit of the
recovery_id.

Status: Resolved [d695bba3]

4

https://github.com/MystenLabs/fastcrypto/blob/c961a01596a87e76f590c7e43aca9d57106dbbb1/fastcrypto/src/groups/secp256r1.rs
https://github.com/MystenLabs/fastcrypto/blob/c961a01596a87e76f590c7e43aca9d57106dbbb1/fastcrypto/src/groups/secp256r1.rs#L98
https://github.com/MystenLabs/fastcrypto/pull/618/commits/10215f0973e0d16197ebc094543210b8f1c89db7
https://github.com/MystenLabs/fastcrypto/blob/c961a01596a87e76f590c7e43aca9d57106dbbb1/fastcrypto/src/groups/secp256r1.rs
https://github.com/MystenLabs/fastcrypto/blob/c961a01596a87e76f590c7e43aca9d57106dbbb1/fastcrypto/src/groups/secp256r1.rs#L112
https://github.com/MystenLabs/fastcrypto/pull/618/commits/c53399a2f2796f329435f4b23bcac019911cd4a7
https://github.com/MystenLabs/fastcrypto/pull/618/commits/d108330a372637dc2eeeb81a385dedb4c6a0c910
https://github.com/MystenLabs/fastcrypto/blob/c961a01596a87e76f590c7e43aca9d57106dbbb1/fastcrypto/src/secp256r1/recoverable.rs
https://github.com/MystenLabs/fastcrypto/blob/c961a01596a87e76f590c7e43aca9d57106dbbb1/fastcrypto/src/secp256r1/recoverable.rs#L167
https://github.com/MystenLabs/fastcrypto/pull/618/commits/d695bba3c6c23175d31d32265e4477aad033cc7a

M-04: Potential private key leakage via drop
Affected Code: src/secp256r1/mod.rs (line 308)
Summary: drop implementation leaks private keys on the stack. The

Secp256r1PrivateKey implementation uses OnceCell to cache the
byte representation of the private key and later calls
bytes.take().zeroize() within the zeroize trait implementation to
wipe the memory. The .take() function uses move to transfer the
ownership. The move operation compiles to memcopy, which copies the
bytes to the destination of the move, subsequently making the initial
location inaccessible (but still containing the original bit pattern).
The drop implementation does not run for the original location and
there is no way to customize the move behavior in Rust. This is a
documented limitation of the zeroize crate.

Suggestion: There are several places where the move operation is ap-
plied on the private keys, which would all leak the secret on the stack.
One practical approach to protect against leaking secret memory is to
put the secret bytes in a Box as soon as possible while being extremely
careful about moves until that point. Once the secret data gets inside,
the Box moves are safe because only the pointer to the box will be
copied around, not the actual data.

Status: The suggested approach requires a significant refactoring of the
codebase; therefore, the team has decided only to perform a best-
effort fix for the problem. This is done by wrapping the bytes into
Zeroizing wrapper instead of performing bytes.take().zeroize()
inside the drop. The Zeroizing wrapper carefully zeroizes the bytes
without moving. This ensures that the secret bytes are not leaked
during the drop.
Fixes: [45275491, e884cc09]

M-05: Scalar type used to represent field element
Affected Code: src/secp256r1/conversion.rs (line 32)
Summary: The function fq_arkworks_to_p256 is expected to convert

an arkworks field element (ark_secp256r1::Fq) to a p256 field ele-
ment (p256::FieldElement). However, the function returns a p256
scalar (ark_secp256r1::Scalar) instead of the desired p256 field el-
ement. This is erroneous as these types represent different fields, and
the conversion is not performed with the intention to move from one
field to the other explicitly. Additionally, the issue is rare enough to
evade randomized testing.

5

https://github.com/MystenLabs/fastcrypto/blob/c961a01596a87e76f590c7e43aca9d57106dbbb1/fastcrypto/src/secp256r1/mod.rs
https://github.com/MystenLabs/fastcrypto/blob/c961a01596a87e76f590c7e43aca9d57106dbbb1/fastcrypto/src/secp256r1/mod.rs#L308
https://docs.rs/zeroize/latest/zeroize/#stackheap-zeroing-notes
https://github.com/MystenLabs/fastcrypto/pull/621/commits/452754919dd838ec8df3c99be5ff66f2d2b3cc2c
https://github.com/MystenLabs/fastcrypto/commit/e884cc098934c4b221fc537088755fdaa86a110f
https://github.com/MystenLabs/fastcrypto/blob/c961a01596a87e76f590c7e43aca9d57106dbbb1/fastcrypto/src/secp256r1/conversion.rs
https://github.com/MystenLabs/fastcrypto/blob/c961a01596a87e76f590c7e43aca9d57106dbbb1/fastcrypto/src/secp256r1/conversion.rs#L32

Suggestion: The function should return p256::FieldElement type in-
stead. Add a test case with a scalar of size greater than the order of
the field to ensure that the fix is correct.

Status: Missing test case. Resolved [2c00745e]

2.3 Low
L-01: Windowed multiplication fails for cache size 1
Affected Code: src/groups/multiplier/windowed.rs (line 56)
Summary: new doesn’t handle the base case when the cache size is 1

which is a valid power of 2. For a cache size of 1, cache[1] will be
out of bounds.

Suggestion: Add check for the case when CACHE_SIZE is 1.
Status: Resolved [614b397f]

L-02: Missing check for CACHE_SIZE being an exact power of 2
Affected Code: src/groups/multiplier/windowed.rs (lines 59,95)
Summary: If CACHE_SIZE is not an exact power of 2, this leads to un-

defined behavior in the above-mentioned lines of code.
Suggestion: Check that CACHE_SIZE is an exact power of 2. Alterna-

tively, set CACHE_SIZE to be 2**SLIDING_WINDOW_WIDTH.
Status: Resolved [b51d9838]

L-03: mul is not constant time due to upstream implementation
Affected Code: src/groups/multiplier/windowed.rs (line 65)
Summary: While the method used is constant time, mul is not constant

time as the arkwork group’s addition implementation is also not con-
stant time.

Suggestion: Adjust documentation to reflect upstream dependency.
Status: Open

L-04: compute_multiples is incorrect when window_size is 1
Affected Code: src/groups/multiplier/windowed.rs (line 213)
Summary: compute_multiples returns incorrect results when window_size

is 1. The value is strictly positive and thus passes the assert state-
ment. The correct value of smallest_multiple in that case should
equal base_element rather than base_element.double().

Suggestion: Initialize smallest_multiple to base_element (instead of
base_element.double()), and change the for loop to start at 1 (in-
stead of 2).

Status: Resolved [614b397f]

6

https://github.com/MystenLabs/fastcrypto/pull/618/commits/2c00745eaaaaa5b52e3c8be1372a7b7c9ee79252
https://github.com/MystenLabs/fastcrypto/blob/c961a01596a87e76f590c7e43aca9d57106dbbb1/fastcrypto/src/groups/multiplier/windowed.rs
https://github.com/MystenLabs/fastcrypto/blob/c961a01596a87e76f590c7e43aca9d57106dbbb1/fastcrypto/src/groups/multiplier/windowed.rs#L56
https://github.com/MystenLabs/fastcrypto/pull/618/commits/614b397fbf1148b78c9a07ec638cb00ff722b032
https://github.com/MystenLabs/fastcrypto/blob/c961a01596a87e76f590c7e43aca9d57106dbbb1/fastcrypto/src/groups/multiplier/windowed.rs
https://github.com/MystenLabs/fastcrypto/blob/c961a01596a87e76f590c7e43aca9d57106dbbb1/fastcrypto/src/groups/multiplier/windowed.rs#L59
https://github.com/MystenLabs/fastcrypto/blob/c961a01596a87e76f590c7e43aca9d57106dbbb1/fastcrypto/src/groups/multiplier/windowed.rs#L95
https://github.com/MystenLabs/fastcrypto/pull/618/commits/b51d98387268211b2839de7784eb6a0ac79e37e5
https://github.com/MystenLabs/fastcrypto/blob/c961a01596a87e76f590c7e43aca9d57106dbbb1/fastcrypto/src/groups/multiplier/windowed.rs
https://github.com/MystenLabs/fastcrypto/blob/c961a01596a87e76f590c7e43aca9d57106dbbb1/fastcrypto/src/groups/multiplier/windowed.rs#L65
https://github.com/arkworks-rs/algebra/blob/c015ea331674368461ff466bc7cbc69806f61628/ec/src/models/short_weierstrass/group.rs#L341
https://github.com/MystenLabs/fastcrypto/blob/c961a01596a87e76f590c7e43aca9d57106dbbb1/fastcrypto/src/groups/multiplier/windowed.rs
https://github.com/MystenLabs/fastcrypto/blob/c961a01596a87e76f590c7e43aca9d57106dbbb1/fastcrypto/src/groups/multiplier/windowed.rs#L213
https://github.com/MystenLabs/fastcrypto/pull/618/commits/614b397fbf1148b78c9a07ec638cb00ff722b032

L-05: Overflow can cause arbitrary read of bits outside the given
range
Affected Code: src/groups/multiplier/integer_utils.rs (line 31)
Summary: The function get_lendian_from_substring is expected to

return the little-endian representation of the substring of a given byte
and a range [start, end). If end − start is greater than 8 then the
following code ((1 << (end - start))- 1)as u8 causes an overflow
leading to an arbitrary read of bits outside the given range.

Suggestion: Add code to handle the case where end is greater than 8.
Status: Resolved [a05e5806]

L-06: Potential overflow in div_ceil
Affected Code: src/groups/multiplier/integer_utils.rs (line 37)
Summary: The div_ceil implementation uses (numerator + denominator

- 1)/ denominator to perform the ceiling division. This can overflow
if the values of either the numerator or denominator are big enough.

Suggestion: Refactor (numerator + denominator - 1)/ denominator
to 1 + ((numerator - 1)/ denominator) and add a check that numerator
is greater than zero.

Status: Resolved [066a98e0]

L-07: from_bytes should check that recovery_id is in the correct
range
Affected Code: src/secp256r1/recoverable.rs (line 71)
Summary: from_bytes does not check that recovery_id is in range [0,

3].
Suggestion: Add assertion that recovery_id < 4.
Status: Resolved [1805fec7]

L-08: zeroize implementation for Secp256r1PrivateKey is super-
fluous
Affected Code: src/secp256r1/mod.rs (line 301)
Summary: The Secp256r1PrivateKey implements both zeroize and

drop traits with the exact same implementation. This makes the
zeroize trait implementation useless as the drop function will al-
ways be called.

Suggestion: Either make the drop call the zeroize function or just
remove the implementation.

Status: Resolved [9a3a179f]

7

https://github.com/MystenLabs/fastcrypto/blob/c961a01596a87e76f590c7e43aca9d57106dbbb1/fastcrypto/src/groups/multiplier/integer_utils.rs
https://github.com/MystenLabs/fastcrypto/blob/c961a01596a87e76f590c7e43aca9d57106dbbb1/fastcrypto/src/groups/multiplier/integer_utils.rs#L31
https://github.com/MystenLabsfastcrypto/pull/618/commits/a05e5806985af90326e0887a03b79d7518dd63cb
https://github.com/MystenLabs/fastcrypto/blob/c961a01596a87e76f590c7e43aca9d57106dbbb1/fastcrypto/src/groups/multiplier/integer_utils.rs
https://github.com/MystenLabs/fastcrypto/blob/c961a01596a87e76f590c7e43aca9d57106dbbb1/fastcrypto/src/groups/multiplier/integer_utils.rs#L37
https://github.com/MystenLabs/fastcrypto/pull/618/commits/066a98e0d02dc15d17b1e77acf7eccd51d9fd663
https://github.com/MystenLabs/fastcrypto/blob/c961a01596a87e76f590c7e43aca9d57106dbbb1/fastcrypto/src/secp256r1/recoverable.rs
https://github.com/MystenLabs/fastcrypto/blob/c961a01596a87e76f590c7e43aca9d57106dbbb1/fastcrypto/src/secp256r1/recoverable.rs#L71
https://github.com/MystenLabs/fastcrypto/pull/618/commits/1805fec7e71eba26c3436f9088c85d814c0db1f8
https://github.com/MystenLabs/fastcrypto/blob/c961a01596a87e76f590c7e43aca9d57106dbbb1/fastcrypto/src/secp256r1/mod.rs
https://github.com/MystenLabs/fastcrypto/blob/c961a01596a87e76f590c7e43aca9d57106dbbb1/fastcrypto/src/secp256r1/mod.rs#L301
https://github.com/MystenLabs/fastcrypto/commit/9a3a179f437cd36642766460781cfad7e158e2d5

L-09: k value generation diverges from RFC6979
Affected Code: src/secp256r1/mod.rs (line 402)
Summary: The value H::digest(msg).digest passed to the

rfc6979::generate_k function should be reduced modulo the group
order as required by the function documentation and RFC. Diverging
from this is safe to do (Sect 3.6 in RFC6979) but we believe there is
little benefit to be had.

Suggestion: Reduce z modulo the group order before calling
rfc6979::generate_k. Alternatively, flag the divergence in the doc-
umentation.

Status: Resolved [8d1b4e9f, d97faf43]

2.4 Informational

I-01: Inconsistency between PartialEq, PartialOrd, and Ord trait
implementations for Secp256r1PublicKey

Affected Code: src/secp256r1/mod.rs (lines 122,128,134)
Summary: The PartialOrd and Ord trait implementations for

Secp256r1PublicKey are inconsistent with the PartialEq implemen-
tation, as the former converts the underlying p256::ecdsa::VerifyingKey
to bytes and performs byte-level comparison, while the latter directly
uses the upstream implementation of the trait. The Rust documen-
tation explicitly states that implementations of PartialOrd and Ord
must be consistent with PartialEq.

Suggestion: Use the upsteam implementation for the PartialOrd and
Ord traits as well.

Status: Resolved [b67d65bb]

I-02: Use member type for better code consistency
Affected Code: src/secp256r1/mod.rs (lines 153,159)
Suggestion: Use <ProjectivePoint as GroupElement>::ScalarType

instead of crate::groups::secp256r1::Scalar for better code con-
sistency.

Status: Resolved [664d853d]

I-03: Simplify usage of OnceCell with get_or_init instead of
get_or_try_init

Affected Code:

8

https://github.com/MystenLabs/fastcrypto/blob/c961a01596a87e76f590c7e43aca9d57106dbbb1/fastcrypto/src/secp256r1/mod.rs
https://github.com/MystenLabs/fastcrypto/blob/c961a01596a87e76f590c7e43aca9d57106dbbb1/fastcrypto/src/secp256r1/mod.rs#L402
https://datatracker.ietf.org/doc/html/rfc6979#section-3.6
https://github.com/MystenLabs/fastcrypto/pull/618/commits/8d1b4e9f8bfbab5201b1b20021bca9aee1c52c7a
https://github.com/MystenLabs/fastcrypto/pull/618/commits/d97faf43eceac4f49b8c98be66aa2e91c542fedb
https://github.com/MystenLabs/fastcrypto/blob/c961a01596a87e76f590c7e43aca9d57106dbbb1/fastcrypto/src/secp256r1/mod.rs
https://github.com/MystenLabs/fastcrypto/blob/c961a01596a87e76f590c7e43aca9d57106dbbb1/fastcrypto/src/secp256r1/mod.rs#L122
https://github.com/MystenLabs/fastcrypto/blob/c961a01596a87e76f590c7e43aca9d57106dbbb1/fastcrypto/src/secp256r1/mod.rs#L128
https://github.com/MystenLabs/fastcrypto/blob/c961a01596a87e76f590c7e43aca9d57106dbbb1/fastcrypto/src/secp256r1/mod.rs#L134
https://doc.rust-lang.org/std/cmp/trait.PartialEq.html
https://doc.rust-lang.org/std/cmp/trait.PartialEq.html
https://github.com/MystenLabs/fastcrypto/pull/618/commits/b67d65bb15165f40b500344fcaac0cf564195de6
https://github.com/MystenLabs/fastcrypto/blob/c961a01596a87e76f590c7e43aca9d57106dbbb1/fastcrypto/src/secp256r1/mod.rs
https://github.com/MystenLabs/fastcrypto/blob/c961a01596a87e76f590c7e43aca9d57106dbbb1/fastcrypto/src/secp256r1/mod.rs#L153
https://github.com/MystenLabs/fastcrypto/blob/c961a01596a87e76f590c7e43aca9d57106dbbb1/fastcrypto/src/secp256r1/mod.rs#L159
https://github.com/MystenLabs/fastcrypto/pull/618/commits/664d853d9c10603d634da2a78ae686e69038ec61

• src/secp256r1/mod.rs (lines 229,296,348)
• src/secp256r1/recoverable.rs (line 92)

Summary: The current implementation uses get_or_try_init with OnceCell,
which expects that the initialization function passed to it might re-
turn a Result.Err. However, in all calls to get_or_try_init, an
explicit Ok(something) is returned. This can be simplified by using
get_or_init instead and not wrapping the object in Ok.

Suggestion: Consider replacing get_or_try_init with get_or_init in
the affected code to simplify the calls and remove the unnecessary
wrapping of the object in Ok.

Status: Resolved [e884cc09]

I-04: Use ark_secp256r1::Projective to reduce conversions
Affected Code:

• src/secp256r1/conversion.rs (line 40)
• src/secp256r1/recoverable.rs (lines 222,235)
• src/secp256r1/mod.rs (lines 196,210)

Summary: The output value of affine_pt_p256_to_arkworks is con-
verted to ark_secp256r1::Projective in all of its uses.

Suggestion: Refactor affine_pt_p256_to_arkworks to directly return
ark_secp256r1::Projective and remove the follow-up conversions.

Status: Resolved [acfb776f]

9

https://github.com/MystenLabs/fastcrypto/blob/c961a01596a87e76f590c7e43aca9d57106dbbb1/fastcrypto/src/secp256r1/mod.rs
https://github.com/MystenLabs/fastcrypto/blob/c961a01596a87e76f590c7e43aca9d57106dbbb1/fastcrypto/src/secp256r1/mod.rs#L229
https://github.com/MystenLabs/fastcrypto/blob/c961a01596a87e76f590c7e43aca9d57106dbbb1/fastcrypto/src/secp256r1/mod.rs#L296
https://github.com/MystenLabs/fastcrypto/blob/c961a01596a87e76f590c7e43aca9d57106dbbb1/fastcrypto/src/secp256r1/mod.rs#L348
https://github.com/MystenLabs/fastcrypto/blob/c961a01596a87e76f590c7e43aca9d57106dbbb1/fastcrypto/src/secp256r1/recoverable.rs
https://github.com/MystenLabs/fastcrypto/blob/c961a01596a87e76f590c7e43aca9d57106dbbb1/fastcrypto/src/secp256r1/recoverable.rs#L92
https://github.com/MystenLabs/fastcrypto/commit/e884cc098934c4b221fc537088755fdaa86a110f
https://github.com/MystenLabs/fastcrypto/blob/c961a01596a87e76f590c7e43aca9d57106dbbb1/fastcrypto/src/secp256r1/conversion.rs
https://github.com/MystenLabs/fastcrypto/blob/c961a01596a87e76f590c7e43aca9d57106dbbb1/fastcrypto/src/secp256r1/conversion.rs#L40
https://github.com/MystenLabs/fastcrypto/blob/c961a01596a87e76f590c7e43aca9d57106dbbb1/fastcrypto/src/secp256r1/recoverable.rs
https://github.com/MystenLabs/fastcrypto/blob/c961a01596a87e76f590c7e43aca9d57106dbbb1/fastcrypto/src/secp256r1/recoverable.rs#L222
https://github.com/MystenLabs/fastcrypto/blob/c961a01596a87e76f590c7e43aca9d57106dbbb1/fastcrypto/src/secp256r1/recoverable.rs#L235
https://github.com/MystenLabs/fastcrypto/blob/c961a01596a87e76f590c7e43aca9d57106dbbb1/fastcrypto/src/secp256r1/mod.rs
https://github.com/MystenLabs/fastcrypto/blob/c961a01596a87e76f590c7e43aca9d57106dbbb1/fastcrypto/src/secp256r1/mod.rs#L196
https://github.com/MystenLabs/fastcrypto/blob/c961a01596a87e76f590c7e43aca9d57106dbbb1/fastcrypto/src/secp256r1/mod.rs#L210
https://github.com/MystenLabs/fastcrypto/pull/618/commits/acfb776fc4bab6855b38ccf58e392593f0f28a0e

References

1. Certicom research, sec 1: Elliptic curve cryptography, 2010. https://www.secg.
org/sec1-v2.pdf.

2. Certicom research, sec 2: Recommended elliptic curve domain parameters, 2010.
https://www.secg.org/sec2-v2.pdf.

3. T. Pornin. Deterministic Usage of the Digital Signature Algorithm (DSA) and
Elliptic Curve Digital Signature Algorithm (ECDSA). RFC 6979, Aug. 2013.

10

https://www.secg.org/sec1-v2.pdf
https://www.secg.org/sec1-v2.pdf
https://www.secg.org/sec2-v2.pdf

About Common Prefix

Common Prefix is a blockchain research, development, and consulting
company consisting of a small number of scientists and engineers spe-
cializing in many aspects of blockchain science. We work with industry
partners who are looking to advance the state-of-the-art in our field to
help them analyze and design simple but rigorous protocols from first
principles, with provable security in mind.

Our consulting and audits pertain to theoretical cryptographic proto-
col analyses as well as the pragmatic auditing of implementations in both
core consensus technologies and application layer smart contracts.

11

	 Mysten Fastcrypto ECDSA Secp256r1 Audit
	References

