
Mysten Fastcrypto Groth16 Audit

Shresth Agrawal1,2 Pyrros Chaidos1,3

1 Common Prefix
2 Technical University of Munich

3 University of Athens

October 19, 2023
Last update: October 24, 2023

1 Overview

1.1 Introduction

Mysten Labs commissioned Common Prefix to audit the Groth16 verifi-
cation implementation within their fastcrypto library. The primary ob-
jectives of the audit were to assess the security, adherence to the relevant
publications, and also investigate performance optimizations, and code
quality improvements to these particular implementations. Fastcrypto is
a Rust-based library that implements selected cryptographic primitives
and also serves as a wrapper for several carefully chosen cryptography
crates, ensuring optimal performance and security for Mysten Labs’ soft-
ware solutions, including their blockchain platform, Sui.

Groth16 [1] is a zero-knowledge proof system that is optimized for
small proof size and fast verification speed. A zero-knowledge proof sys-
tem allows one to prove that a certain statement is true without disclosing
the reason. Groth16 uses pairing-based curve cryptography and requires
a trusted setup that is specific to each family of statements (effectively, a
separate setup for each application). Such a proof system usually consists
of three parts (mostly with considerable overlap in the codebase): (a) the
setup, or generator, which produces the structured reference string (SRS)
necessary to use the proof system; (b) the prover, who uses the SRS and
some (potentially private) data (the witness) and produces a proof π that
a statement s is true; and (c) the verifier, who using the SRS can verify π
to check whether s is true without having to see the rest of the supporting
data. This audit is limited to the verifier portion of the codebase.

Fastcrypto’s Groth16 implementation relies on several Arksworks crates,
including ark-bn254, ark-crypto-primitives, ark-groth16, etc., for the logic
of the core proof system itself as well as for the underlying curve point,
scalar and field element operations. The fastcrypto part of the code is

https://github.com/MystenLabs/fastcrypto
https://github.com/arkworks-rs
https://crates.io/crates/ark-bn254
https://crates.io/crates/ark-crypto-primitives
https://crates.io/crates/ark-groth16/


for the most part tasked with optimizing the use of prepared verification
keys, including serialization, deserialization, and conversion functionality.

This audit report evaluates the Groth16 verification implementation
within the fastcrypto library. We have audited the code for security, effi-
ciency, and reliability. The scope of this audit was limited to the imple-
mentation of the verification functionality of Groth16 and the required
conversion and pre-processing functions within the Fastcrypto library and
did not extend to the library’s dependencies or other components. In
particular, we note that the audit does not cover any of the Arkworks
codebase. Additionally, the downstream applications in which the veri-
fication functionality is utilized, any code used for SRS generation, and
proof generation lie outside the scope of this audit.

1.2 Audited Files

1. [eb77c755] fastcrypto-zkp/src/bn254/api.rs
2. [eb77c755] fastcrypto-zkp/src/bn254/verifier.rs

1.3 Disclaimer

This audit does not give any warranties on the bug-free status of the given
code, i.e., the evaluation result does not guarantee the nonexistence of
any further findings of security issues. This audit report is intended to be
used for discussion purposes only. We always recommend proceeding with
several independent audits and a public bug bounty program to ensure
the security of the project.

The scope of the audit was constrained exclusively to the Fastcrypto
wrapper code, with no examination conducted on its associated depen-
dencies. Notably, the Arkworks Groth16 crate, upon which Fastcrypto is
reliant, has not undergone a prior audit. Furthermore, the audit does not
encompass any reference string generation functionality in terms of code
or execution.

1.4 Executive Summary

Overall, the Groth16 wrapper and conversion functions are of very high
quality, adhering to Rust’s best practices.

The implementation relies on the upstream Arkworks implementation
for most complex operations performed in the context of Groth16 verifi-
cation, providing a wrapper functionality to utilize the relevant functions

2

https://github.com/MystenLabs/fastcrypto/blob/eb77c7556c1996aac9610f0475742a3277f26a3f/fastcrypto-zkp/src/bn254/api.rs
https://github.com/MystenLabs/fastcrypto/blob/eb77c7556c1996aac9610f0475742a3277f26a3f/fastcrypto-zkp/src/bn254/verifier.rs


in fastcrypto. Due to this, the findings of the audit are mostly focused on
simplicity and consistency of the codebase.

One thread of findings concerns the multiple functions that can be
used to verify a proof (I-04) and the possibility of using them in a way
that bypasses length checks (L-01).

The other findings suggest small changes to enforce consistency with
the upstream codebase (I-03), internal consistency of serialization and
deserialization (I-01) and finally using rust convention traits to align with
language conventions and make the code structure clearer (I-02).

1.5 Findings Severity Breakdown

The findings are classified under the following severity categories accord-
ing to the impact and the likelihood of an attack.

Level Description
High Logical errors or implementation bugs that are easily

exploited. In the case of contracts, such issues can lead
to any kind of loss of funds.

Medium Issues that may break the intended logic, are devia-
tions from the specification, or can lead to DoS at-
tacks.

Low Issues harder to exploit (exploitable with low proba-
bility), can lead to poor performance, clumsy logic, or
seriously error-prone implementation.

Informational Advisory comments and recommendations that could
help make the codebase clearer, more readable, and
easier to maintain.

2 Findings

2.1 High

None Found.

2.2 Medium

None Found.

3



2.3 Low

L01: Missing length validation in verify_groth16.
Affected Code: src/bn254/api.rs (line 54)
Summary: The verify_groth16 function lacks length validation for

the proof_public_inputs_as_bytes parameter. This is in contrast
to the verify_groth16_in_bytes function, which does perform the
check. Thus, in the intended flow of verify_groth16_in_bytes call-
ing verify_groth16 the check will be performed, but it will be skipped
if verify_groth16 is called directly.

Suggestion: It is recommended to move the length validation check,
currently present in the verify_groth16_in_bytes function, to the
verify_groth16 function.

Status: Resolved [731d84c5]

2.4 Informational

I-01: Inconsistency in the serialization/deserialization functions
for PreparedVerifyingKey

Affected Code: src/bn254/verifier.rs (lines 39,73)
Summary: The output type of the serialization function doesn’t match

the input type of the deserialization function. Therefore the output of
the serialization operation cannot be directly passed as an argument
to the deserialization function.

Suggestion: It is advisable to harmonize these functions for consistent
usage.

Status: Resolved [f880626]

I-02: Consider using conversion traits instead of specialized func-
tions.
Affected Code: src/bn254/verifier.rs (lines 108,142)
Suggestion: Consider implementing the conversion traits

From<ArkPreparedVerifyingKey> for PreparedVerifyingKey and
From<PreparedVerifyingKey> for ArkPreparedVerifyingKey instead
of relying on specialized functions such as as_arkworks_pvk and
process_vk_special.

Status: Resolved [99a771d, 1ab759c]

4

https://github.com/MystenLabs/fastcrypto/tree/eb77c7556c1996aac9610f0475742a3277f26a3f/fastcrypto-zkp/src/bn254/api.rs
https://github.com/MystenLabs/fastcrypto/tree/eb77c7556c1996aac9610f0475742a3277f26a3f/fastcrypto-zkp/src/bn254/api.rs#L54
https://github.com/MystenLabs/fastcrypto/pull/673/commits/731d84c5068a0893e763a2b1ad192615c7711c20
https://github.com/MystenLabs/fastcrypto/tree/eb77c7556c1996aac9610f0475742a3277f26a3f/fastcrypto-zkp/src/bn254/verifier.rs
https://github.com/MystenLabs/fastcrypto/tree/eb77c7556c1996aac9610f0475742a3277f26a3f/fastcrypto-zkp/src/bn254/verifier.rs#L39
https://github.com/MystenLabs/fastcrypto/tree/eb77c7556c1996aac9610f0475742a3277f26a3f/fastcrypto-zkp/src/bn254/verifier.rs#L73
https://github.com/MystenLabs/fastcrypto/pull/673/commits/f880626201aa88cd2b59204b3c33c23d3a785373
https://github.com/MystenLabs/fastcrypto/tree/eb77c7556c1996aac9610f0475742a3277f26a3f/fastcrypto-zkp/src/bn254/verifier.rs
https://github.com/MystenLabs/fastcrypto/tree/eb77c7556c1996aac9610f0475742a3277f26a3f/fastcrypto-zkp/src/bn254/verifier.rs#L108
https://github.com/MystenLabs/fastcrypto/tree/eb77c7556c1996aac9610f0475742a3277f26a3f/fastcrypto-zkp/src/bn254/verifier.rs#L142
https://github.com/MystenLabs/fastcrypto/pull/673/commits/99a771de5f5a83eaf05ad7e6e9bc6841f19f4b6c
https://github.com/MystenLabs/fastcrypto/pull/673/commits/1ab759c1eb6608899f3552ec3517814092981853


I-03: Maintain consistency with upstream code during point
negation.
Affected Code: src/bn254/verifier.rs (lines 146,147)
Summary: In the Arkworks implementation, during the

prepare_verifying_key operation, the gamma_g2_neg_pc and
delta_g2_neg_pc affine points are temporarily converted to projec-
tive representation before negation, and are converted back to affine.
The fastcrypto implementation omits these additional conversions.
Even though these conversions are redundant, it may be beneficial to
add those for consistency between the implementations in the event
that future changes in the underlying libraries cause the results to
differ.

Suggestion: Consider aligning the code with the conventions for con-
version used in Arkworks.

Status: Acknowledged

I-04: Improve proof verification API
Affected Code:

• src/bn254/api.rs (lines 30,54)
• src/bn254/verifier.rs (line 154)

Summary: Currently, there are three functions responsible for proof ver-
ification: verify_groth16_in_bytes, verify_groth16, and
verify_with_processed_vk.

Suggestion: For stylistic consistency, it is suggested to relocate the
verify_with_processed_vk function to the api.rs file and call it
from within the verify_groth16 function.

Status: Resolved [04a098a, 99a771d]

5

https://github.com/MystenLabs/fastcrypto/tree/eb77c7556c1996aac9610f0475742a3277f26a3f/fastcrypto-zkp/src/bn254/verifier.rs
https://github.com/MystenLabs/fastcrypto/tree/eb77c7556c1996aac9610f0475742a3277f26a3f/fastcrypto-zkp/src/bn254/verifier.rs#L146
https://github.com/MystenLabs/fastcrypto/tree/eb77c7556c1996aac9610f0475742a3277f26a3f/fastcrypto-zkp/src/bn254/verifier.rs#L147
https://github.com/arkworks-rs/groth16/blob/9bac46fb3b1fbc0d2c88c6bc59b0ba798216bf6f/src/verifier.rs#L17
https://github.com/MystenLabs/fastcrypto/tree/eb77c7556c1996aac9610f0475742a3277f26a3f/fastcrypto-zkp/src/bn254/api.rs
https://github.com/MystenLabs/fastcrypto/tree/eb77c7556c1996aac9610f0475742a3277f26a3f/fastcrypto-zkp/src/bn254/api.rs#L30
https://github.com/MystenLabs/fastcrypto/tree/eb77c7556c1996aac9610f0475742a3277f26a3f/fastcrypto-zkp/src/bn254/api.rs#L54
https://github.com/MystenLabs/fastcrypto/tree/eb77c7556c1996aac9610f0475742a3277f26a3f/fastcrypto-zkp/src/bn254/verifier.rs
https://github.com/MystenLabs/fastcrypto/tree/eb77c7556c1996aac9610f0475742a3277f26a3f/fastcrypto-zkp/src/bn254/verifier.rs#L154
https://github.com/MystenLabs/fastcrypto/pull/673/commits/04a098a11b0e36cf7152d61c67e558d95d7599bf
https://github.com/MystenLabs/fastcrypto/pull/673/commits/99a771de5f5a83eaf05ad7e6e9bc6841f19f4b6c


References

1. J. Groth. On the size of pairing-based non-interactive arguments. In Advances
in Cryptology–EUROCRYPT 2016: 35th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Vienna, Austria, May 8-12,
2016, Proceedings, Part II 35, pages 305–326. Springer, 2016.

6



About Common Prefix

Common Prefix is a blockchain research, development, and consulting
company consisting of a small number of scientists and engineers spe-
cializing in many aspects of blockchain science. We work with industry
partners who are looking to advance the state-of-the-art in our field to
help them analyze and design simple but rigorous protocols from first
principles, with provable security in mind.

Our consulting and audits pertain to theoretical cryptographic proto-
col analyses as well as the pragmatic auditing of implementations in both
core consensus technologies and application layer smart contracts.

7


	 Mysten Fastcrypto Groth16 Audit 
	References


