Seal Cryptography Specification and
Implementation Audit

Dominik Apel! Jodo Azevedo!' Pyrros Chaidos’® Bernardo David!+*
Jakov Mitrovski'?

! Common Prefix
2 Technical University of Munich
3 University of Athens
4 IT University of Copenhagen

June 12, 2025
Last update: August 12, 2025

1 Overview

1.1 Introduction

Mysten Labs commissioned Common Prefix to audit a part of the SEAL
decentralized secrets management (DSM) service. SEAL enables users to
encrypt messages while specifying a set of conditions for their decryption.
When encrypting, the user selects a set of servers to entrust with decrypt-
ing the ciphertext and also chooses the number of servers that need to
reply before decryption is possible (i.e. the threshold value). Encryption is
performed with no involvement by the servers themselves, and produces a
multi-part ciphertext. To decrypt, the user contacts the required number
of servers to obtain decryption subkeys specialized to the decryption con-
dition. Technically, each server holds a master key for an Identity Based
Encryption (IBE) scheme similar to Boneh-Franklin [BFO01]. A server will
check that the condition is true before producing any subkeys. Collecting
the mandated number of subkeys allows decryption to go through. Sub-
keys are structured to be checkable even in encrypted form, a valuable
property if they are collected through intermediaries. That is, subkeys are
BLS signatures on a message describing the decryption condition.

The primary objectives of the audit were to assess security, adherence
to the provided specification, performance optimizations, and code qual-
ity. The audit focused on the specification and the TypeScript implemen-
tation of the main encryption and decryption functions of the Threshold
Secret-shared IBE primitive. The encryption, decryption, and encrypted
validation of subkeys for the Encrypted BLS Service were part of the spec-
ification but not present in the TypeScript codebase, as these operations
are handled in a different part of the protocol implementation.



1.2 Audited Files

Audit start commit: [8f2eele]
Latest audited commit: [abfedec]

1. Cryptography in Seal v2 - June 12, 2025 (shared privately)
sha-256 744£8d15£6a338546b6c4b1962f6343673113e04a2286a4a86e6be56e48c96dd
bls12381.ts

decrypt.ts

kdf.ts

ibe.ts

encrypt.ts

dem.ts

elgamal.ts

shamir.ts

© 0N OUE W

1.3 Disclaimer

This audit does not give any warranties on the bug-free status of the given
code, i.e., the evaluation result does not guarantee the nonexistence of
any further findings of security issues. This audit report is intended to be
used for discussion purposes only. We always recommend proceeding with
several independent audits and a public bug bounty program to increase
confidence in the security of the project.

The scope of this audit was strictly limited to the specification doc-
ument and the TypeScript files listed above. Any other code, including
files that import, interact with, or rely on the audited components, as well
as external dependencies and third-party libraries, was considered out of
scope of this audit. Importantly, the audit did not include the Encrypted
BLS Service, as its implementation falls outside the audited TypeScript
codebase.

1.4 Executive Summary

The audited specification document and implementation code were of
high quality and free of any high-severity findings. The specification doc-
ument included formal proofs for the claimed security properties and a
pseudocode version of the SEAL primitive, providing a firm basis for the
implementation audit. Several findings are related to the intended use of
the primitive (e.g., not implementing the share consistency check present
in the specification) and the choice of the security model (static corrup-
tion model). These deviations do not contradict the CCA security of the


https://github.com/MystenLabs/ts-sdks/blob/8f2ee1e2357171999f4dd359100d4dc25b3b1ecb
https://github.com/MystenLabs/ts-sdks/blob/a5fe4eca2a20633a31e39f4f987ae4af5234d316
https://github.com/MystenLabs/ts-sdks/blob/8f2ee1e2357171999f4dd359100d4dc25b3b1ecb/packages/seal/src/bls12381.ts
https://github.com/MystenLabs/ts-sdks/blob/8f2ee1e2357171999f4dd359100d4dc25b3b1ecb/packages/seal/src/decrypt.ts
https://github.com/MystenLabs/ts-sdks/blob/8f2ee1e2357171999f4dd359100d4dc25b3b1ecb/packages/seal/src/kdf.ts
https://github.com/MystenLabs/ts-sdks/blob/8f2ee1e2357171999f4dd359100d4dc25b3b1ecb/packages/seal/src/ibe.ts
https://github.com/MystenLabs/ts-sdks/blob/8f2ee1e2357171999f4dd359100d4dc25b3b1ecb/packages/seal/src/encrypt.ts
https://github.com/MystenLabs/ts-sdks/blob/8f2ee1e2357171999f4dd359100d4dc25b3b1ecb/packages/seal/src/dem.ts
https://github.com/MystenLabs/ts-sdks/blob/8f2ee1e2357171999f4dd359100d4dc25b3b1ecb/packages/seal/src/elgamal.ts
https://github.com/MystenLabs/ts-sdks/blob/8f2ee1e2357171999f4dd359100d4dc25b3b1ecb/packages/seal/src/shamir.ts

IBE primitive but may become relevant depending on the application.
Several other findings are related to the handling of zero polynomials.
This has little relevance in the domain of Shamir Secret Sharing, but
could surface in edge cases or when the code is reused in other domains
with different assumptions. The remaining findings are informational and
primarily relate to a non-critical specification mismatch, code clarity, and
deviations from best practices.

1.5 Findings Severity Breakdown

Our findings are classified under the following severity categories, accord-
ing to their impact and their likelihood of leading to an attack.

H Level Description H

High Logical errors or implementation bugs that are easily
exploited. In the case of contracts, such issues can lead
to any kind of loss of funds.

Medium |Issues that may break the intended logic, are devia-
tions from the specification, or can lead to DoS at-
tacks.

Low Issues harder to exploit (exploitable with low proba-
bility), can lead to poor performance, clumsy logic, or
seriously error-prone implementation.

Informational|Advisory comments and recommendations that could
help make the codebase clearer, more readable, and
easier to maintain.




2 Findings

2.1 High

None found

2.2 Medium

MO1 Deviation from specification: Missing consistency check

Affected Code: [decrypt.ts (line 91))

Summary: The implementation is missing the share consistency check
used to achieve the share consistency property in the specification.
However, the nonce check is present, preventing any tampering with
the ciphertexts.

Suggestion: We suggest adding documentation that explains why the
share consistency property is not required in the current codebase
and notes the limitations that other implementations should be aware
of when using this code as a reference. A note should be added to
the IND-CCA proof, which states that the checks are not used and
thus not necessary for achieving the property. Another option is to
mandate a robust secret sharing scheme with a t = 5 — 1 threshold.

Status: Resolved [bdbb922]

2.3 Low

L01 Out-of-bounds memory access when multiplying polynomi-
als

Affected Code: shamir.ts (line 163)

Summary: The mul method in the Polynomial class directly accesses en-
tries in the coefficients array. This can cause out-of-bounds array
access when one of the polynomials is the zero polynomial.

For example, when calling Polynomial.zero() .mul(somePolynomial), the
code will try to access this.coefficients[0] where this.coefficients is
an empty array.

Suggestion: Consider replacing the direct array access with the safe
getCoefficient method as shown in the line below:
sum = sum.add(this.getCoefficient(j) .mul(other.getCoefficient(i - j)));

Status: Resolved [ffc6edb]


https://github.com/MystenLabs/ts-sdks/blob/8f2ee1e2357171999f4dd359100d4dc25b3b1ecb/packages/seal/src/decrypt.ts
https://github.com/MystenLabs/ts-sdks/blob/8f2ee1e2357171999f4dd359100d4dc25b3b1ecb/packages/seal/src/decrypt.ts#L91
https://github.com/MystenLabs/ts-sdks/commit/bdbb9225303b84b12a2f15a9dc73d309f2fa8b9c
https://github.com/MystenLabs/ts-sdks/blob/8f2ee1e2357171999f4dd359100d4dc25b3b1ecb/packages/seal/src/shamir.ts
https://github.com/MystenLabs/ts-sdks/blob/8f2ee1e2357171999f4dd359100d4dc25b3b1ecb/packages/seal/src/shamir.ts#L163
https://github.com/MystenLabs/ts-sdks/commit/ffc6e4b10253321678fc50e48d94de03272bbee0

L02 Asymmetric behavior and out-of-bounds access when check-

ing equality

Affected Code: shamir.ts (lines 249-254)

Summary: The equals method has unexpected behavior when compar-
ing with the zero polynomial. For example,
Polynomial.zero() .equals(Polynomial.one()) incorrectly returns true,
while Polynomial.one().equals(Polynomial.zero()) throws an error due
to accessing other.coefficients[0] on an empty array. The root cause is
that the method compares degrees first (both have degree 0), then tries
to compare coefficients without using the safe getCoefficient method.

Suggestion: We suggest modifying the equals method similarly to the
provided code snippet:

Code Listing 1.1: Equals method suggestion

1 equals(other: Polynomial): boolean {
2 if (this.coefficients.length !==
other.coefficients.length) {

3 return false;

4 }

5 return this.coefficients.every((c, i) =>
c.equals(other.getCoefficient(i)));

6 }

This compares the number of entries in the coefficients array (which
distinguishes zero from non-zero polynomials) and uses the safe

getCoefficient method to prevent out-of-bounds access.
Status: Resolved [ffc6e4b]

2.4 Informational
101 Deviation from best practices

Affected Code: bls12381.ts (line 83)

Summary: The hashToCurve method in the G2Element class is currently
an instance method, but it would be more appropriate as a static
method. Since it generates a new G2Element from input data rather
than operating on an existing instance.

Suggestion: We suggest making the hashToCurve method static to follow

best practices.
Status: Resolved [d4d58b4]

I02 Non-critical deviation from specification: Require that ex-
actly a threshold number of shares are provided

Affected Code: [decrypt.ts (line 41))


https://github.com/MystenLabs/ts-sdks/blob/8f2ee1e2357171999f4dd359100d4dc25b3b1ecb/packages/seal/src/shamir.ts
https://github.com/MystenLabs/ts-sdks/blob/8f2ee1e2357171999f4dd359100d4dc25b3b1ecb/packages/seal/src/shamir.ts#L249-L254
https://github.com/MystenLabs/ts-sdks/commit/ffc6e4b10253321678fc50e48d94de03272bbee0
https://github.com/MystenLabs/ts-sdks/blob/8f2ee1e2357171999f4dd359100d4dc25b3b1ecb/packages/seal/src/bls12381.ts
https://github.com/MystenLabs/ts-sdks/blob/8f2ee1e2357171999f4dd359100d4dc25b3b1ecb/packages/seal/src/bls12381.ts#L83
https://github.com/MystenLabs/ts-sdks/commit/d4d58b48c22e39cd3cb8c4cd0751361ffe511475
https://github.com/MystenLabs/ts-sdks/blob/8f2ee1e2357171999f4dd359100d4dc25b3b1ecb/packages/seal/src/decrypt.ts
https://github.com/MystenLabs/ts-sdks/blob/8f2ee1e2357171999f4dd359100d4dc25b3b1ecb/packages/seal/src/decrypt.ts#L41

Summary: The current implementation only checks that
inKeystore.length < encryptedObject.threshold and throws an error if
not enough shares are available. However, the specification requires an
exact match between the number of shares provided and the threshold
value, rather than just ensuring sufficient shares are available. More
importantly, if more shares than the threshold are provided and some
of them are incorrect, the Shamir secret sharing reconstruction will
produce an incorrect result that may appear valid. For example, sup-
pose the threshold is three and we provide four shares, three of which
are correct and one of which is incorrect. In that case, the combine func-
tion will interpolate a wrong polynomial and return a wrong secret,
leading to decryption failure.

Suggestion: We suggest changing the condition from inKeystore.length
< encryptedObject.threshold to
inKeystore.length !== encryptedObject.threshold to enforce exact thresh
old matching. This ensures specification compliance.

Status: Acknowledged

I03 Non-critical deviation from specification: Missing admissi-
bility check

Affected Code: [decrypt.ts (line 51))

Summary: The implementation is missing the secret key admissibility
check used to validate the set of provided secret keys against their
corresponding verification keys. This does not contradict any security
properties, as their definitions assume the provided keys are correct.
However, depending on the application (e.g. an on-chain decryption or
decryption within a SNARK), the lack of such checks may enable the
creation of ciphertexts that fail to decrypt using correct keys but are
able to be “pretend decrypted” using specially crafted (but invalid)
placeholders.

Suggestion: We suggest adding documentation that explains why the
admissibility check is not required in the current codebase and notes
the limitations that other implementations should be aware of when
using this code as a reference.

Status: Resolved [a9¢1964)]

104 “Plain” encryption strategy provides no encryption

Affected Code: dem.ts (line 98)


https://github.com/MystenLabs/ts-sdks/blob/8f2ee1e2357171999f4dd359100d4dc25b3b1ecb/packages/seal/src/decrypt.ts
https://github.com/MystenLabs/ts-sdks/blob/8f2ee1e2357171999f4dd359100d4dc25b3b1ecb/packages/seal/src/decrypt.ts#L51
https://github.com/MystenLabs/ts-sdks/commit/a9c196451cfc43807492ff596143f4e39c307b1b
https://github.com/MystenLabs/ts-sdks/blob/8f2ee1e2357171999f4dd359100d4dc25b3b1ecb/packages/seal/src/dem.ts
https://github.com/MystenLabs/ts-sdks/blob/8f2ee1e2357171999f4dd359100d4dc25b3b1ecb/packages/seal/src/dem.ts#L98

Summary: The “Plain” encryption strategy does not actually perform
encryption - it just returns the key directly. This is confusing and
potentially dangerous as it gives the false impression of encryption.

Suggestion: We suggest removing the “Plain” encryption strategy en-
tirely as it may lead to confusion about whether data is encrypted.

Status: Resolved [f5954{3, a689625|

105 Bypass checks with negative threshold, redundant check
keyServers.length > MAX_U8

Affected Code: encrypt.ts (lines 51-54)

Summary: The check keyServers.length > MAX_U8 is redundant because
the combination of keyServers.length < threshold and
threshold > MAX_U8 already ensures that keyServers.length cannot ex-
ceed Max_us. Additionally, the check threshold === 0 only prevents zero
thresholds but allows negative threshold values, which are invalid for
threshold-based secret sharing.

Suggestion: Consider removing the redundant check keyServers.length
> MAX_U8 as it is logically impossible to satisfy this condition when

the other checks fail. We also suggest changing threshold === 0 to
threshold <= 0 which will make encrypt to fail if the threshold is neg-
ative.

Status: Partially Resolved [f5{330a]

106 Deviation from key management best practices

Affected Code: encrypt.ts (line 108)

Summary: The encrypt function returns the encryption key to the caller,
which moves the responsibility of key disposal to the caller, which
creates a security risk.

Suggestion: Remove the key from the return value and securely dispose
of it within the function. If the key is needed for backup purposes,
consider a separate secure backup mechanism instead of returning it
directly.

Status: Acknowledged

107 Potential hash collisions in exported key derivation func-
tions

Affected Code: kdf.ts (lines 46, 85-87)


https://github.com/MystenLabs/ts-sdks/commit/f5954f340882c5a2822f611afde36471e93565e0
https://github.com/MystenLabs/ts-sdks/commit/a68962569845d23917b3ddcefc7c08d6f3a4da9a
https://github.com/MystenLabs/ts-sdks/blob/8f2ee1e2357171999f4dd359100d4dc25b3b1ecb/packages/seal/src/encrypt.ts
https://github.com/MystenLabs/ts-sdks/blob/8f2ee1e2357171999f4dd359100d4dc25b3b1ecb/packages/seal/src/encrypt.ts#L51-L54
https://github.com/MystenLabs/ts-sdks/commit/f5f330add23022e5cd8435d0cf229f7cf553e564
https://github.com/MystenLabs/ts-sdks/blob/8f2ee1e2357171999f4dd359100d4dc25b3b1ecb/packages/seal/src/encrypt.ts
https://github.com/MystenLabs/ts-sdks/blob/8f2ee1e2357171999f4dd359100d4dc25b3b1ecb/packages/seal/src/encrypt.ts#L108
https://github.com/MystenLabs/ts-sdks/blob/8f2ee1e2357171999f4dd359100d4dc25b3b1ecb/packages/seal/src/kdf.ts
https://github.com/MystenLabs/ts-sdks/blob/8f2ee1e2357171999f4dd359100d4dc25b3b1ecb/packages/seal/src/kdf.ts#L46
https://github.com/MystenLabs/ts-sdks/blob/8f2ee1e2357171999f4dd359100d4dc25b3b1ecb/packages/seal/src/kdf.ts#L85-L87

Summary: The kdf and derivekey functions accept index and threshold
parameters of type number but cast internally to uints. This could
lead to collisions in the key derivation process if values that are not
in Uint8 range are passed. The same problem can arise when a float
is passed as threshold or index to xdf and deriveKey, since casting the
parameter to a Uint8Array will perform implicit rounding. Additionally,
the derivekey function joins the keyServers array and includes the result
in the hash preimage. This allows for collisions if the attacker can craft
malicious arrays that contain elements of unequal lengths.

Suggestion: We suggest adding range validation for the threshold and
the index parameters in both functions to prevent potential collisions,
as well as checking whether they are integers using Number.isInteger().
In addition, convert the elements of the keyServers array to a fixed
length before joining them. This prevents the attacker from finding
collisions even if the attacker is to craft the keyServers array freely.

Status: Resolved [a4e7009, a689625]

108 Duplicate code

Affected Code: shamir.ts (lines 220-240)

Summary: The combine method implements polynomial interpolation
and evaluation at zero. This duplicates logic that already exists in
the interpolate and evaluate methods. The current implementation is
more efficient, but it creates code duplication and reduces maintain-
ability.

Suggestion: Consider using the existing methods for better maintain-
ability (e.g., Polynomial.interpolate(coordinates) .evaluate(O)). Alterna-
tively, the current, more efficient implementation can be kept, but we
suggest extracting the validation logic into a method to avoid dupli-
cate code.

Status: Acknowledged

109 Missing default cases in switch statements

Affected Code:
e encrypt.ts (line 129)
o kdf.ts (line 56)
Summary: Multiple switch statements lack default cases, preventing
consistent error handling:
® encrypt.ts: Switch statement for xemType values lacks a default case.
e kdf.ts: Switch statement for KeyPurpose values lacks a default case,
causing the function to return undefined for invalid values.


https://github.com/MystenLabs/ts-sdks/commit/a4e700912f5195098d0f243c9edc58234476ad38
https://github.com/MystenLabs/ts-sdks/commit/a68962569845d23917b3ddcefc7c08d6f3a4da9a
https://github.com/MystenLabs/ts-sdks/blob/8f2ee1e2357171999f4dd359100d4dc25b3b1ecb/packages/seal/src/shamir.ts
https://github.com/MystenLabs/ts-sdks/blob/8f2ee1e2357171999f4dd359100d4dc25b3b1ecb/packages/seal/src/shamir.ts#L220-L240
https://github.com/MystenLabs/ts-sdks/blob/8f2ee1e2357171999f4dd359100d4dc25b3b1ecb/packages/seal/src/encrypt.ts
https://github.com/MystenLabs/ts-sdks/blob/8f2ee1e2357171999f4dd359100d4dc25b3b1ecb/packages/seal/src/encrypt.ts#L129
https://github.com/MystenLabs/ts-sdks/blob/8f2ee1e2357171999f4dd359100d4dc25b3b1ecb/packages/seal/src/kdf.ts
https://github.com/MystenLabs/ts-sdks/blob/8f2ee1e2357171999f4dd359100d4dc25b3b1ecb/packages/seal/src/kdf.ts#L56

Suggestion: Add default cases to all switch statements to handle unex-
pected values consistently. For the kemType switch, throw an error for
unsupported values. For the KeyPurpose switch, either throw an error

for invalid values or return a safe default value.
Status: Resolved [a4e7009]

110 JSDoc inconsistencies across exported functions and meth-
ods

Summary: Multiple exported functions and methods have inconsistent
or missing JSDoc documentation:

® ibe.ts: encapBatched function JSDoc states "returns a list of keys,
32 bytes each” but actually returns GTElement|[] (576 bytes each).

® ibe.ts: decrypt function JSDoc does not match the arguments
passed to the function.

® encrypt.ts: encrypt function JSDoc documents encryptionlnput as
” AesGemEncryptionInput or Plain” but omits Hmac256Ctr, which
is also valid.

® dem.ts: EncryptionInput interface missing JSDoc documentation.

e shamir.ts: Consider adding documentation to the Polynomial class,
especially to div which could be confused with division between

polynomials.
Suggestion: We suggest standardizing JSDoc documentation across all

exported functions and methods by:
e Correcting return type descriptions to match actual implementa-
tions.
e Adding missing JSDoc for undocumented functions/methods.
e Ensuring parameter documentation is complete and accurate.
e Validating that enum values match documented types.

e Adding input validation documentation where applicable.
Status: Resolved [bdbb922, fd17{17]

111 Model Restriction: Adaptive corruptions

Summary: The security definitions for Encrypted BLS and TSS-BF-
KEM-CCA are modeled against a static set of corrupted servers. A dy-
namic model may be more appropriate for real-world scenarios where
there are adaptive corruptions. The schemes may even be adaptively
secure under certain conditions, but this is not analyzed.

Suggestion: The adaptive setting is hard to provide a general solution
for. It may be worth investigating a delayed corruption model featur-
ing role transfers with erasures.

Status: Acknowledged


https://github.com/MystenLabs/ts-sdks/commit/a4e700912f5195098d0f243c9edc58234476ad38
https://github.com/MystenLabs/ts-sdks/commit/bdbb9225303b84b12a2f15a9dc73d309f2fa8b9c
https://github.com/MystenLabs/ts-sdks/commit/fd17f179a5b62bf0fc9f8d7caa9055495047b393

112 Scope Restriction: Encrypted BLS service

Summary: The Encrypted BLS Service is featured in the specification
but is not included in the audited codebase, as it is implemented on
a different layer. The |elgamal.tg file is not related to the Elgamal
encryption of shares.

Suggestion: No action needed.

Status: Resolved

10


https://github.com/MystenLabs/ts-sdks/blob/8f2ee1e2357171999f4dd359100d4dc25b3b1ecb/packages/seal/src/elgamal.ts

References

BF01. Dan Boneh and Matt Franklin. Identity-based encryption from the weil pairing.
In Annual international cryptology conference, pages 213-229. Springer, 2001.

11



About Common Prefix

Common Prefix is a blockchain research and development company. We
believe blockchains will re-organize the world’s economy to achieve plan-
etary—scale efficient resource allocation and governance. We do the sci-
ence and engineering to bring the blockchain field towards mainstream
adoption and real-world impact, tackling foundational problems such as
scalability, interoperability, and usability. We specialize in all aspects of
blockchain science, from the low-level consensus of Layer-1s to the high-
level tokenomics of DeFi applications. We have in-house scientist experts
in game theory, incentives, auctions, cryptography, zero knowledge, mul-
tiparty computation, light clients, wallets, signature schemes, DeF'i, and
smart contracts from top universities worldwide. We are a team with
multichain expertise, with engineers working in ecosystems ranging from
Bitcoin and Ethereum, to Cosmos, Cardano, and Solana. We work with
blockchain-first-only industry partners who push the boundaries of what
is possible. We help them design, analyze, implement, deploy, and com-
mercialize rigorous protocols from first principles, with provable security
and pragmatism in mind.

12



	 Seal Cryptography Specification and Implementation Audit 
	References


