

Bitpanda

Audit of the StakedVision and
VisionTokenMigrator contracts

 May 12, 2025

Overview
Introduction

Common Prefix was commissioned to perform a security audit of Bitpanda’s

StakedVision.sol and VisionTokenMigrator.sol smart contracts.

The code is of high quality, with clear structure and well-commented functions that explain the

expected behavior. It is also accompanied by an extensive test suite.

We recommend adding further test coverage for edge cases, particularly scenarios involving

users who maintain stakes across different reward cycles.

Description of the contracts

The VisionTokenMigrator contract facilitates the migration from the original single-chain
Pantos and BEST tokens to the new multi-chain Vision token on Ethereum. The migration
process is initiated by an address with the CRITICAL_OPS role, which sends an amount of
Vision tokens to the contract to fund the migration.

Once initialized, users can invoke the migrate function to exchange their entire balances of
Pantos and BEST tokens for Vision tokens. Prior to doing so, users must grant the
VisionTokenMigrator contract the necessary approvals to transfer their Pantos and BEST
tokens.

The exchange rates from Pantos and BEST to Vision tokens are fixed and hardcoded within the
contract.

The StakedVision contract enables users to stake Vision tokens and earn rewards in the form

of additional Vision tokens. These rewards are distributed over cycles. Each cycle is initiated by

an address with the CRITICAL_OPS role, which is responsible for setting the total reward

amount for the cycle, transferring those rewards to the contract, and optionally defining a

maximum yield per second. Rewards are distributed linearly over the duration of each cycle.

1

When a user stakes tokens, they receive ERC-4626-compliant share tokens proportional to the

amount staked. These shares represent the user’s stake and accrue rewards over time.

In addition to starting new cycles, the CRITICAL_OPS address can update the per-second

reward cap and modify the cooldown duration at any time. When a non-zero

cooldownDuration is set, users cannot immediately redeem their staked tokens and rewards.

Instead, they must first call cooldownShares or cooldownAssets, specifying the amount

they wish to withdraw. This request is recorded, and only after the cooldown period has elapsed

can the user finalize the withdrawal. During the cooldown, no additional rewards are earned on

the specified assets.

The CRITICAL_OPS address is expected to act in good faith and not arbitrarily or indefinitely

extend the cooldown duration after users have deposited. However, even if the cooldown

duration is increased, it will not affect users who have already initiated a withdrawal, as the

cooldown timestamp is locked at the time of their request.

​ ​

2

Disclaimer

Note that this audit does not give any warranties on the bug-free status of the given smart

contracts, i.e. the evaluation result does not guarantee the nonexistence of any further findings

of security issues. This audit report is intended to be used for discussion purposes only.

Functional correctness should not rely on human inspection but be verified through thorough

testing. We always recommend proceeding with several independent audits and a public bug

bounty program to ensure the security of the project.

Findings Severity Breakdown

The findings are classified under the following severity categories according to the impact and

the likelihood of an attack.

Level Description

Critical Logical errors or implementation bugs that are easily exploited and may
lead to any kind of loss of funds

High Logical errors or implementation bugs that are likely to be exploited and
may have disadvantageous economic impact or contract failure

Medium Issues that may break the intended contract logic or lead to DoS attacks

Low
Issues harder to exploit (exploitable with low probability), issues that
lead to poor contract performance, clumsy logic or seriously error-prone
implementation

Informational Advisory comments and recommendations that could help make the
codebase clearer, more readable and easier to maintain

3

Findings
Critical

No critical issues found.

High

HIGH-1
Rewards can be collected without prior staking due to zero supply edge
case

Contract(s) StakedVision.sol

Status Rejected

Description

The StakedVision contract mints ERC4626-compliant shares to users based on the ratio of

deposited tokens to the total assets and total supply of shares. Under normal conditions, the

number of shares minted equals:

 shares = (assets * totalSupply) / totalAssets

However, when totalSupply is zero—such as at the beginning of a cycle or after all shares

have been redeemed—the calculation deviates. In this case, the deposited token amount is

directly converted to an equal number of shares, regardless of any accumulated rewards.

4

This behavior becomes problematic when combined with the reward distribution mechanism.

Specifically, if rewards have accumulated before any user has deposited—meaning

totalAssets has increased independently—a user can exploit this by:

1.​ Waiting until some rewards dx accumulate (e.g., after time t with

bpsYieldCapPerSecond == 0 and no existing staked tokens).​

2.​ Making a minimal deposit x, receiving x shares since totalSupply == 0.​

3.​ Immediately redeeming those x shares and receiving both the original x tokens and the

full accumulated rewards dx.

Recommendation

We suggest introducing a safeguard in the reward distribution logic to ensure rewards are only

distributed if totalSupply > 0. This guarantees that rewards are only accumulated when

users have actually staked tokens.

Alleviation

The team has decided not to address this issue, as the described behavior is considered

intentional. Specifically, when no stakes have occurred during a given cycle, the first staker is

entitled to receive all accumulated rewards up to that point, regardless of the duration of his

stake.

Moreover, the cycle design will be carefully constructed to make such scenarios rare, with only

minimal rewards likely to accumulate before the first stake.

The team’s official response was:

“No action has been taken for this issue as we think this is the expected behaviour.

In the provided example, rewards are no longer proportional to the staked period. However, this is
considered fair and is the expected behaviour.

Furthermore, internal processes supporting how cycles are triggered make this situation pretty
unlikely.”

5

Medium​

MEDIUM-1 Missing external pause controls in StakedVision contract

Contract(s) StakedVision.sol

Status Resolved

Description

The StakedVision contract inherits from OpenZeppelin’s Pausable contract and defines a

PAUSER role intended to control the pausing and unpausing of the contract. While the role is set,

the contract does not expose any external pause or unpause functions. Additionally, the

inherited Pausable contract only provides internal _pause and _unpause methods.

As a result, despite having a role dedicated to pausing, there is currently no way for the PAUSER

to invoke these actions externally.

Recommendation

We recommend renaming the StakedVision contract's _pause() and _unpause()

functions to pause() and unpause(), and declaring them as external. Additionally, the

whenNotPaused and whenPaused modifiers on these functions can be removed, as the

internal Pausable methods they invoke already enforce these checks.

Alleviation

The team addressed the issue at commit c4e61ea46f9f0deeff5423732784e67b079a4bc6

by implementing externally callable pause and unpause functions, accessible only to

designated roles.

6

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/Pausable.sol

Low

LOW-1 Subsequent requests override existing cooldown end

Contract(s) StakedVision.sol

Status Rejected

Description

When a non-zero cooldown duration is set, users must initiate a withdrawal by calling either

cooldownShares() or cooldownAssets(). Upon calling, the specified amount is locked,

and a cooldownEnd timestamp is set, after which the user can finalize the withdrawal.

However, if the user calls either function again before the previously initiated cooldown period

ends, the newly requested assets are correctly added to the locked amount, but the

cooldownEnd timestamp is reset for all locked assets—including those already partway

through their cooldown. This behavior effectively delays the withdrawal of previously

cooled-down assets, penalizing users for making additional cooldown requests during the

waiting period.

Recommendation

We suggest either tracking separate cooldown periods for each amount of locked assets,

allowing users to claim funds as their respective cooldowns expire or, if the current design is

intentional, explicitly document this behavior in the contract comments and documentation to

avoid confusion.

Alleviation

The team has informed us that this is by design and is considered expected behavior.

7

Informational/Suggestions

INFO-1 Redundant CooldownDurationUpdated event emission

Contract(s) IStakedVision.sol

Status Resolved

Description

The address with the CRITICAL_OPS role can call updateCooldownDuration() to modify

the cooldown duration. Currently, each time this function is invoked, a

CooldownDurationUpdated event is emitted—regardless of whether the new duration is

actually different from the previous one.

Although the event includes both the old and new values (allowing observers to detect whether

a change has occurred), emitting the event unnecessarily when no actual change has taken

place introduces avoidable overhead and may create noise in event logs.

Recommendation

We suggest adding a conditional check to ensure that the new cooldown duration is different

from the current one before proceeding with the update and emitting the event.

Alleviation

The issue was resolved at commit 74bc931d4f92ef5716ae4724be2b9860f064958b by

adding an additional check to ensure that a message is emitted only when the cooldown

duration is updated to a new value.

8

INFO-2 Improvements on custom errors and events

Contract(s) IStakedVision.sol

Status Resolved

Description

The custom error SurplusNotWithdraw is defined in the contract but never emitted. Based on

the comments, it appears to be a remnant of an older implementation of

createRewardsCycle, no longer relevant.

Additionally, the RewardsCycleCreated event currently emits only the end time and total

reward amount for each cycle. However, it omits the bpsYieldCapPerSecond, which is

important for users and off-chain systems to fully understand the parameters of a given reward

cycle.

Furthermore, the CooldownStarted event does not include the cooldown end time, which is

the point after which the user is allowed to withdraw their assets and rewards.

Recommendation

We suggest removing the unused SurplusNotWithdraw error to simplify the codebase,

extending the RewardCycleCreated event to include the bpsYieldCapPerSecond

parameter and updating the CooldownStarted event to include the cooldown end timestamp

to improve transparency and off-chain usability.

Alleviation

The team implemented the suggested improvements at commit

7d95128f76676be43398439541b5b6aa6087a48e.

9

INFO-3 Missing input validation

Contract(s) VisionTokenMigrator.sol

Status Resolved

Description

In the constructor of the VisionTokenMigrator contract, a sanity check is performed to

ensure that the token addresses (Pantos, BEST, Vision) are not set to the zero address. However,

similar checks are not applied to the CRITICAL_OPS and DEFAULT_ADMIN role addresses.

Failing to validate these role addresses could result in accidentally assigning critical roles to the

zero address. This would make the contract functionally unusable and necessitate a

redeployment to fix the error.

Recommendation

We suggest adding explicit checks in the constructor to ensure that both CRITICAL_OPS and

DEFAULT_ADMIN addresses are not the zero address.

Alleviation

The issue was resolved at commit c7afa6f3af547448a2de3055c5303dcc80b33079 by

adding the suggested sanity checks.

INFO-4 Lack of mechanism to withdraw unused Vision tokens

Contract(s) VisionTokenMigrator.sol

Status Rejected

10

Description

The address assigned the CRITICAL_OPS role is responsible for initiating the migration

process and transferring a large amount of Vision tokens to the VisionTokenMigrator

contract. These tokens are then distributed to users in exchange for their Pantos and BEST

tokens.

To ensure full coverage of the circulating supply, it is expected that a generous amount of Vision

tokens will be deposited. However, if some users never migrate their tokens, any unused Vision

tokens will remain indefinitely locked within the contract, with no current mechanism to recover

them.

Recommendation

We suggest implementing a function allowing the CRITICAL_OPS address to withdraw

unclaimed Vision tokens from the contract after the migration period has ended or under

predefined conditions (e.g., after a certain time or after pausing the migration).

Alleviation

The team has deliberately chosen not to implement a withdraw function, in order to avoid taking

ownership of the unclaimed Vision tokens.

INFO-5 Prevent zero-duration reward cycles

Contract(s) StakedVision.sol

Status Resolved

Description

In the createRewardsCycle() function, the following condition is used to validate the end

time of a new rewards cycle:

11

 if(rewardsCycleEndTimestamp < block.timestamp) revert CycleEndTimestampInThePast();

However, using a strictly less-than (<) comparison allows the rewardsCycleEndTimestamp

to equal the current block.timestamp, which results in a cycle with zero duration. In such a

case, no rewards would be distributed, potentially leading to confusion or wasted gas.

Recommendation

We suggest updating the condition to use a less-than-or-equal (<=) comparison to ensure that

each new reward cycle has a strictly positive duration.

Alleviation

The team fixed the issue at commit c7afa6f3af547448a2de3055c5303dcc80b33079 by

tightening the check to ensure that the cycle’s end time is strictly in the future.

INFO-6 Inaccurate or missing comments

Contract(s)
StakedVision.sol,VisionTokenMigrator.sol,
IStakedVision.sol

Status Resolved

Description

●​ IStakedVision.sol :

○​ The comment associated with the NotEnoughRewardFunds() error incorrectly

states that it is triggered when users attempt to withdraw rewards. In reality, this

error is emitted when the CRITICAL_OPS address attempts to set a reward

amount for a new cycle that exceeds the available funds in the contract.

●​ VisionTokenMigartor.sol :

12

○​ In _previewPantosMigration():

 // and equal, we can simplifying the formula to:

 // (amount * PAN_TO_VISION_EXCHANGE_RATE * DECIMALS_DIFFERENCE_SCALING)

 // EXCHANGE_RATE_SCALING_FACTOR //Common prefix: the simplified formula is​
 // (amount*PAN_TO_VISION_EXCHANGE_RATE)

○​ In _previewBestMigration():

// @param amount The amount of Pantos tokens //Common prefix: BEST tokens​
___​
 ​
// and equal, we can simplifying the formula to:

 // (amount * BEST_TO_VISION_EXCHANGE_RATE * DECIMALS_DIFFERENCE_SCALING)

 // EXCHANGE_RATE_SCALING_FACTOR //Common prefix: the simplified formula is​
 // (amount*PAN_TO_VISION_EXCHANGE_RATE)

●​ StakedVision.sol :​

The core ERC-4626 functions (deposit, mint, withdraw, redeem) reference the

ERC-4626 base contract for documentation, but the inherited contract does not contain

any comments or explanations.

Alleviation

The team made the suggested changes at commit

3d209c0f9a4a3f5ec7778ab077c1ee4bab3f357a.

13

https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC4626.sol

About Common Prefix

Common Prefix is a blockchain research, development, and consulting company consisting of a

small number of scientists and engineers specializing in many aspects of blockchain science.

We work with industry partners who are looking to advance the state-of-the-art in our field to

help them analyze and design simple but rigorous protocols from first principles, with provable

security in mind.

Our consulting and audits pertain to theoretical cryptographic protocol analyses as well as the

pragmatic auditing of implementations in both core consensus technologies and application

layer smart contracts.

14

	
	
	Bitpanda
	
	Overview
	Introduction
	Description of the contracts
	The VisionTokenMigrator contract facilitates the migration from the original single-chain Pantos and BEST tokens to the new multi-chain Vision token on Ethereum. The migration process is initiated by an address with the CRITICAL_OPS role, which sends an amount of Vision tokens to the contract to fund the migration.
	Once initialized, users can invoke the migrate function to exchange their entire balances of Pantos and BEST tokens for Vision tokens. Prior to doing so, users must grant the VisionTokenMigrator contract the necessary approvals to transfer their Pantos and BEST tokens.
	The exchange rates from Pantos and BEST to Vision tokens are fixed and hardcoded within the contract.
	​​
	Disclaimer
	Findings Severity Breakdown
	

	
	Findings
	Critical
	High
	
	Description
	Recommendation
	Alleviation

	Medium​
	
	Description
	Recommendation
	Alleviation

	Low
	
	Description
	Recommendation
	Alleviation

	
	Informational/Suggestions
	
	Description
	Recommendation
	Alleviation
	
	Description
	Recommendation
	Alleviation
	
	Description
	Recommendation
	Alleviation
	
	Description
	Recommendation
	Alleviation
	
	Description
	Recommendation
	Alleviation
	
	Description
	Alleviation
	

	
	About Common Prefix

