
StakeNote - A Proof-of-Stake Protocol for
CryptoNote Payments

Bernardo David1,2 and Dimitris Karakostas1

1 Common Prefix
2 IT University of Copenhagen (ITU)

{bernardo,dimitris}@commonprefix.com

Abstract. This work proposes a distributed ledger protocol that com-
bines Proof-of-Stake (PoS) with privacy and anonymity preserving pay-
ments. We combine Ouroboros Praos, a well-known PoS protocol, with
CryptoNote, a privacy-preserving payment system based on ring signa-
tures, which has been widely used in practice. We demonstrate a practical
approach for combining a PoS ledger with ring signature-based payments,
such that the ledger’s security properties and the payment system’s
privacy guarantees carry over.

Acknowledgements This paper is a collaboration between the Zano open-source
cryptocurrency and ecosystem, and Common Prefix. The project was commissioned
and funded by Zano. The academic paper was authored by Prof. Bernardo David
and Dr. Dimitris Karakostas from Common Prefix, with helpful discussions,
questions, and feedback from Andrey Sabelnikov and Sowle from Zano.

1 Introduction

Bitcoin [22] introduced a new paradigm for distributed computing and financial
applications. On the technical side, the Proof-of-Work (PoW), blockchain-based
ledger enabled the creation of an open and permissionless database, where
participants join and leave the protocol arbitrarily. On the application side, the
Bitcoin cryptocurrency founded the domain of Decentralized Finance (DeFi) [26],
which was later enhanced with programmability capabilities via smart contracts.
Despite its innovations, Bitcoin left a lot to be desired.

The first concern about Bitcoin was the sustainability of PoW usage. Bitcoin
mining is consuming such large amounts of energy [1,8] that has led to calls for
regulatory or policy interventions [5]. This concern was identified early and drove
research towards more sustainable approaches. The most promising alternative
was Proof-of-Stake (PoS) [16,7], which replaces the usage of physical assets,
namely energy in the case of PoW, with digital assets, namely the assets (“stake”)
that are traded on the ledger itself.

A second concern regarding usability stemmed from Bitcoin’s public nature.
By default all information logged on the Bitcoin ledger is public and readable
by everyone, revealing sensitive financial information. Consequently, various
cryptocurrencies that guarantee user anonymity and privacy have been proposed.
The arguably most popular are Zerocash [3] and CryptoNote [24], which are used
by the Zcash and Monero platforms, respectively.

Naturally, these concerns have led to the exploration of privacy-preserving PoS
protocols. Such protocols include Ouroboros Crypsinous [15] and privacy-aware
blockchains [10], both of which build on the ideas and primitives behind Zerocash.
Another line of work explored anonymous committee election, either in a PoS
setting [2] or with accountability guarantees [6]. Finally, an elegant work showed
the theoretical privacy limitations of anonymous PoS protocols [17], which further
led to the development of protocols that offer security and privacy under different
assumptions and more relaxed, albeit arguably more realistic, settings [25].

None of them systems using Cryptonote rely on a pure PoS mechanism for
consensus. Monero uses PoW, Zano uses an ad-hoc hybrid of PoW and PoS,
whereas Sentz uses a custom quorum-based mechanism inspired by Stellar [19].
Interestingly, little research has been done so far on practical privacy-preserving
PoS protocols which support CryptoNote. The only attempt is Zarcanum [23],
which is seems practical but lacks security proofs showing that it offers liveness
and safety guarantees assuming honest stake majority.

This lack of research can be attributed to multiple reasons. First, Zerocash is
more suitable for academic research, since it is provably secure and offers higher
privacy guarantees than CryptoNote, namely a full anonymity set of all coins in
the system, as opposed to a subset of coins as in CryptoNote. On the contrary,
CryptoNote has not been formally defined and peer reviewed yet, while also a
list of works have broken its privacy guarantees by demonstrating how to trace
CryptoNote transactions [18,21,29,14,27,28].

Our work aims to fill this gap by proposing a ring-friendly, secure, and
practical Proof-of-Stake distributed ledger protocol. Specifically, we present a
consensus protocol that: (i) is secure, meaning it guarantees safety and liveness;
(ii) inherits the privacy guarantees of ring-signature based payment protocols,
like CryptoNote; (iii) is practical, i.e., does not rely on heavy and inefficient
cryptographic primitives. Our primary goal is to offer a realistic alternative to
existing CryptoNote-based ledgers, in order to move away from PoW and towards
a more environmentally sustainable PoS alternative.

2 StakeNote Protocol

At a high level, the protocol follows the same steps as Ouroboros Praos [7], with
some changes in the public setup and leader eligibility proofs. In our setting, each
output consists of a public key and a commitment to the output’s stake value.
To compute each epoch’s snapshot, parties should know when and if an output
has been spent. This is not possible in standard RingCT, so we introduce a new

2

type of output, called “staking outputs”, and enforce that they are identifiably
spent at a consensus level (cf. Section 2.1).

On each slot, every party takes the following steps to create a block:3

1. P creates a VRF output, using the output’s VRF key, in the same manner
as Praos, i.e., passing as input the epoch’s nonce and slot number.4

2. If the VRF output is below some threshold, which is a function of the output’s
stake value, then P is the slot leader and proceeds as follows:

(a) P collects a subset of the snapshot’s UTxOs including the chosen output.
(b) P creates a block with the following proofs:

i. A proof that P knows the spending key of an output in the chosen
subset (without revealing which one).

ii. A proof that the private VRF key, which created the VRF output
from Step 1, is deterministically derived from the private payment
key of the same output from Step 2(b)i.

iii. A proof that the stake value of the same output from Step 2(b)i was
used to compute the threshold of Step 2.

(c) P signs the block by turning the proofs from Step 2b to a signature
of knowledge, proving that the private signing key is the same as the
spending key of the output from Step 2(b)i.

Building Blocks Our protocol uses Verifiable Random Functions (VRF) [20]
with unpredictability under malicious key generation [7,11] as in Ouroboros Praos.
Moreover, we use a modified Concise Linkable Spontaneous Anonymous Group
(CLSAG) [13], which we define in Section 2.2. We now briefly recall the syntax
of our building blocks.
Verifiable Random Functions (VRF) [7] with unpredictability under malicious
key generation consist of three algorithms: KeyGen(λ) → (sk, pk): on input a
security parameter λ outputs a secret key sk and a public key pk; Eval(sk, x)→
(y, πy): on input a secret key sk and a value x, outputs a pseudorandom value
y ∈ {0, 1}lVRF and a proof πr; Verify(pk, x, y, πy)→ 0/1: on input a public key pk,
a value x, a value y, and a proof πy, outputs 1 if and only if the proof verifies.

2.1 Stake Snapshot

In Ouroboros Praos, the epoch’s eligible VRF keys are chosen at a fixed point in
time before the epoch starts (e.g., two epochs prior). At that point, a snapshot
of the stake distribution is taken and only the VRF keys that belong in the
snapshot are eligible for leader election. In CrypoNote this is not possible, since
the amounts of each output are hidden and parties cannot identify which historical
outputs have been spent at any point in time. However, as in Ouroboros, the
epoch’s snapshot should only capture unspent outputs.

3 If P controls multiple UTxOs, then the steps are executed for every output.
4 As we describe in Section 2.2, for each output a VRF key pair is deterministically
created by evaluating a PRF on the output’s payment key.

3

To bypass this issue, we define protocol-specific “staking” outputs, which
are identifiably spent. These differ from standard payment UTxOs only by a
designated flag. With the introduction of staking outputs, a snapshot can now
be directly computed, by collecting all unspent staking outputs.

A user creates a staking output in the same manner as any other UTxO,
i.e., via typical transaction which consumes some UTxO. Note that each staking
output should be created via a separate transaction. If multiple staking outputs
are created within the same transaction, then this leaks the information that
these outputs belong to the same party (who created the transaction).

In order to consume a staking output, the user creates a special transaction
which identifiably spends the output. Specifically, the transaction uses a ring
signature with n = 1, i.e., without any decoys. This is enforced on the consensus
level, meaning that a transaction which consumes a staking output is valid only
if it does not use any decoys.

Because the adversary corrupts parties at the beginning of each epoch, each
staking output should be used only for a single epoch. Specifically, let a staking
output o which is active during an epoch e. Honest parties must: (i) spend o
before the snapshot for epoch e+ 1 is taken; (ii) delete the private key xo of o at
the end of epoch e and before epoch e+ 1 starts.5

2.2 Construction

At its core, our construction relies on a proof which shows that the block is
produced by some eligible UTxO, among a subset of UTxOs in the snapshot,
without revealing which specific UTxO is being used.

The eligibility criterion is the same as Praos, that is a VRF output should be
below a certain threshold. The party P’s VRF key is derived deterministically
from the eligible UTxO’s private key by hashing the latter.

Briefly, P first creates the VRF key, computes the VRF output and checks
whether he is elected as slot leader — in the same manner as Ouroboros Praos.
If so, P creates the block, proves that the VRF key is the hash of the UTxO’s
payment key and that the UTxO’s (committed) stake value is above the eligibility
threshold, and finally signs the block with the UTxO’s payment key. Crucially,
all of the above is done in a way that does not reveal the exact UTxO that is
being used, but only reveals a set of UTxOs which includes the correct one.

Objects and notation

– Global protocol parameters:
• G1, G2, GPAY, GVRF, GST: group generators of finite cyclic groups over a
finite field Fp for some prime p

• n: ring size of CryptoNote payment transactions
• random oracle Hclsag and a PRF6 Hvrf .

5 This behavior is not enforced at the consensus level, but rather defines how honest
parties should use their staking outputs, akin to key erasures in Ouroboros Praos.

6 A Pseudorandom Function is used because we later prove knowledge of a preimage
of the PRF when showing that the VRF key has been correctly derived.

4

• δ: snapshot height delta, i.e., the slot distance between the snapshot’s
taking and the beginning of the epoch

– For every UTxO (output) o, we have the following:
• private elements: (i) vo: stake value; (ii) xo: private payment key; (iii) ro:
salt of value’s Pedersen commitment.

• public elements: (i) Po = xo · GPAY: public payment key; (ii) Co =
vo ·G1 + ro ·G2: Pedersen commitment to output’s stake value; (iii) bST:
“staking” flag bit.
• public elements that are not linkable to o: (i) Zo = xo · GST: virtual
staking public key; (ii) Yo = Hvrf(xo) ·GVRF: VRF public key.

– Output sets: (i) O: all (historical) outputs; (ii) Ôslr : all outputs with bST = 1,
which were unspent at slot slr

– Epoch e: (i) sle: epoch start (slot); (ii) ηe: epoch random nonce; (iii) Oe =

{o ∈ Ôsle−δ}: epoch’s snapshot (set of eligible outputs)

Block creation On a slot slr, for every output o that the party P controls, they
check whether yo < 2lVRFϕf (vo), where Eval(sko, ηe||slr)→ (yo, πyo) is verifiable
under Yo and ϕf (vo) is defined as in [7]. If the check holds, then o is eligible for
creating a block on slot slr, so P creates the following objects:

– T : the minimum value such that vo ≥ T and yo < 2lVRFϕf (T)
– B: block payload (transactions, metadata like timestamps, etc)
– M = ⟨B, (Yo, yo, πyo

), Zo, T ⟩: the unsigned block message

At this point, P needs to prove that they know xo such that:

1. o can be spent using xo;
2. the VRF output (yo, πyo

) was created using the private key Hvrf(xo);
3. the stake value of o is vo ≥ T , such that yo < 2lVRFϕf (T);
4. the block is signed using xo.

Importantly, P does not reveal o itself. Instead, P reveals only a subset of
outputs Oblock ⊆ Oe that contains o. The main proof of our construction concerns
the statement: “I know the private payment key of an output in Oblock, for which
all of the following statements hold at the same time: (i) the output’s key is equal
to the scalar of the point Zo; (ii) the value C is a commitment of the output’s
stake minus the value T .”7

This proof is constructed via a three-column Concise Linkable Spontaneous
Anonymous Group (CLSAG) [13]. Then, the proof is turned into a signature
σCLSAG using the Fiat-Shamir heuristic [9]. For ease of reading, we give the full
proof’s construction at the end of this subsection.

Finally, P creates two more proofs. First, they create πRANGE. This is a range
proof (e.g., using Bulletproofs [4]) such that, for the correct output o, it holds
(vo − T) ≥ 0. Second, they create a non-interactive zero-knowledge (NIZK) proof
πNIZKVRF, which shows that the private key of Yo is the output of a PRF evaluated
on the private key of Zo. Specifically, πNIZKVRF proves the statement: “I know a
value a, such that Zo = a ·GST and Yo = Hvrf(a) ·GVRF”.

The final published block is: ⟨M,Oblock, σCLSAG, πRANGE, πNIZKVRF⟩
7 Note that Oblock, Zo, C, T are all part of the statement, hence public.

5

Block verification A full node validates a new block ⟨M,Oblock, σCLSAG, πRANGE, πNIZKVRF⟩,
by checking all of the following:

– (yo, πyo) is valid w.r.t. Yo, i.e., Verify(Yo, ηe||slr, yo, πyo → 0/1
– yo < 2lVRFϕf (T)
– Oblock ⊆ Oe

– σCLSAG is valid w.r.t. Oblock andM
– πRANGE is valid w.r.t. T and σCLSAG (see below for more details)
– πNIZKVRF is valid w.r.t. Yo, Zo

CLSAG signature We will now describe our construction’s main signature
scheme (Definition 1). Our signature builds on the ideas of CLSAG [13], albeit
without the linkability aspect. Intuitively, the proof can be imagined as a matrix
of n rows and 3 columns, comprising an OR statement across rows and an
AND statement across columns. Specifically, each row corresponds to one of the
outputs in Oblock. Each column corresponds to a value of interest that the party
should prove knowledge: column 1 corresponds to the payment key Po, column 2
corresponds to the key Zo, and column 3 corresponds to the commitment C. The
proof is transformed to a signature via the Fiat-Shamir transformation [9].

Definition 1. Our signature scheme consists of the tuple (Setup,KeyGen,Sign,Verify):

– Setup→ par: Setup selects: (i) a prime p; (ii) group generators G1, G2, GPAY, GST

uniformly at random; (iii) cryptographic hash function Hclsag with codomain Fp
(modeled as random oracle). Then, Setup outputs par = (p,G1, G2, GPAY, GST, n,Hclsag).

– KeyGen → (sk, pk): When queried for a new key, KeyGen samples a fresh
secret key and computes the associated public key: 8

sk = (xo, (vo, ro))

pk = (xo ·GPAY, vo ·G1 + ro ·G2)

– Sign(M,Oblock, sk)→ σ: Sign parses the following:
• ⟨B, (Yo, yo, πyo

), Zo, T ⟩ ←M
• ⟨(P0, C0), . . . , (Pn−1, Cn−1)⟩ ← Oblock

• ⟨xo, (vo, ro)⟩ ← sk
Next:
• Sign picks a random scalar r′ and computes: 9 C = (vo − T) ·G1 + r′ ·G2

• Sign finds the index k, such that pkk = (xo ·GPAY, vo ·G1 + ro ·G2).
• For each i ∈ [0, n− 1], Sign computes Di = Ci − T ·G1 − C.10

• Sign picks (αx, αr)
$←− (Fp)

2 and computes:

8 Here, the “public key” is in practice a UTxO. We use the term “key” and “KeyGen”to
be consistent with digital signature terminology.

9 Note: C is used for the block’s range proof πRANGE. Specifically, the block producer
constructs πRANGE to show that, given C and a threshold T , it holds that (vo −T) ≥ 0
without revealing vo.

10 Observe that: Dk = Co−T ·G1−C = (vo−T−vo+T)·G1+(ro−r′)·G2 = (ro−r′)·G2.

6

∗ Lk = αx ·GPAY

∗ Mk = αx ·GST

∗ Rk = αr ·G2

∗ c(k+1) mod n = Hclsag(M||k||Lk||Mk||Rk)
• Sign sets i = (k + 1) mod n and does the following, until i = k:

1. Picks (s
(x)
i , s

(r)
i)

$←− (Fp)
2.

2. Computes:

∗ Li = s
(x)
i ·GPAY + ci · Pi.

∗ Mi = s
(x)
i ·GST + ci · Zo.

∗ Ri = s
(r)
i ·G2 + ci ·Di.

∗ ci+1 mod n = Hclsag(M||i||Li||Mi||Ri).
3. Sets: i = (i+ 1) mod n.

• Sign computes:

∗ s
(x)
k = αx − ck · xo

∗ s
(r)
k = αr − ck · (ro − r′)

• Finally, Sign outputs: σCLSAG = ⟨C, c0, (s(x)0 , s
(r)
0), . . . , (s

(x)
n−1, s

(r)
n−1)⟩

– Verify(M,Oblock, σ)→ {0, 1}: Verify takes as input a message M, a matrix
Oblock, and a signature σ and then:
• Verify parses the following:

∗ ⟨C, c0, (s(x)0 , s
(r)
0), . . . , (s

(x)
n−1, s

(r)
n−1)⟩ ← σCLSAG

∗ ((P0, C0), . . . , (Pn−1, Cn−1))← Oblock

∗ ⟨B, (Yo, yo, πyo
), Zo, T ⟩ ←M

• Verify sets c′0 = c0.
• For every i ∈ [0, . . . , n− 1], Verify computes:

∗ Li = s
(x)
i ·GPAY + ci · Pi.

∗ Mi = s
(x)
i ·GST + ci · Zo.

∗ Di = Ci − T ·G1 − C.
∗ Ri = s

(r)
i ·G2 + ci ·Di.

∗ c′(i+1) = Hclsag(M||i||Li||Mi||Ri)

• If c0 = c′n Verify outputs 1, otherwise it outputs 0.

2.3 Enhancement: Fixed Staking Output Value

In order to avoid the range proof of the output’s value, the protocol can enforce
that each staking output has a fixed value. Specifically, When creating a staking
output, the user sets its value to (a global parameter) X. This value is not hidden,
as with standard UTxOs, and is enforced on the consensus level, i.e., honest
parties check whether newly-created staking outputs hold exactly X tokens.

This approach has various implications. First, each staking output holds the
same value, so the eligibility threshold is now a global parameter: T ′ = 2lVRFϕf (X).
Therefore, when validating a block, it suffices to check whether the VRF output is
below this threshold: yo ≤ T ′. This removes the costly generation and verification
of the range proof πRANGE. Second, the CLSAG signature becomes simpler,
containing only two columns. Finally, the following information is leaked: (i) for

7

each transaction which creates a staking UTxO, the information that one of
the transaction’s inputs holds at least X tokens;11 (ii) for the transaction which
consumes a staking UTxO, the information that the transaction’s output holds
exactly X tokens.12

3 Discussion

CLSAG Our CLSAG proof σCLSAG satisfies two different purposes. First, as is
the original purpose of CLSAG, the block producer proves that they control one
of the outputs in the group. Note that, in our case, linkability is not needed since
we allow the same private key to produce multiple messages, that is multiple
blocks per epoch. Second, it offers a discrete logarithm equality proof, between Zo

and Po. This is achieved by CLSAG’s elegant idea of reusing the same response

s
(x)
i for the two columns, that correspond to Po and Zo, effectively showing that
the secret of both columns is the same.

Ledger security Our protocol changes Ouroboros Praos as follows. First, the
honest majority assumption now applies on the staking outputs, since the snapshot
is taken over them, instead of the entire stake distribution. Second, slot leader eli-
gibility relies on the CLSAG, range, and NIZK proofs (σCLSAG, πRANGE, πNIZKVRF).
If the primitives used to build these proofs are secure, then the block producer
cannot forge them and produce a block without being the correct slot leader,
hence the security analysis of Ouroboros Praos is directly applicable here. Third,
our protocol assumes a weaker adversary than Ouroboros Praos in terms of adap-
tive corruptions, since our adversary can only corrupt parties at the beginning of
each epoch. Nonetheless, by requiring that parties delete their keys at the end of
each epoch, the security argument of Ouroboros Praos carries over in our case as
well, since the adversary cannot retroactively produce blocks for past slots when
adaptively corrupting parties.

Staking outputs Staking outputs have the following implications. First, a
staking output cannot be used as decoy for standard payment transactions, so
the set of decoys for regular payment transactions is reduced, since staking
outputs are excluded. Second, they reveal that a specific staking output has been
consumed and also the addresses that receive this output’s assets. Consequently,
if a third party receives a payment directly from a staking output, then it knows
that the sender participated in consensus using this output. For example, imagine
that Alice has a staking output o. Alice creates a transaction that consumes o
and which sends some assets to Bob. In this case, Bob, who knows that Alice
created the transaction, can deduce that Alice controlled o. To avoid this hazard,

11 If multiple inputs are used, then it leaks the information that the UTxOs of at least
one of the input vectors hold on aggregate at least X tokens.

12 If the transaction creates multiple outputs, then it leaks the information that these
outputs hold on aggregate X tokens.

8

the miner should send a staking output’s assets to a payment output before
transferring them to a third party. In our example, Alice should consume o in a
transaction that sends the its assets to a regular payment output α (that she
controls), before sending the payment to Bob by consuming α via a standard
transaction, which does not reveal (to Bob) that the funds originate from α (and
consequently o). Finally, stake is not frozen throughout the epoch. The minimum
time that staking outputs should remain active is until the snapshot is taken,
as they can be spent immediately afterwards. This approach is consistent with
Ouroboros Praos, where stake is also not frozen. Still, the protocol’s designer can
optionally enforce a freezing period, if needed.

References

1. for Alternative Finance, C.C.: Cambridge bitcoin electricity consumption index
(2025), https://ccaf.io/cbnsi/cbeci

2. Baldimtsi, F., Madathil, V., Scafuro, A., Zhou, L.: Anonymous lottery in the
proof-of-stake setting. In: Jia, L., Küsters, R. (eds.) CSF 2020 Computer Security
Foundations Symposium. pp. 318–333. IEEE Computer Society Press (2020). https:
//doi.org/10.1109/CSF49147.2020.00030

3. Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza,
M.: Zerocash: Decentralized anonymous payments from bitcoin. In: 2014 IEEE
Symposium on Security and Privacy. pp. 459–474. IEEE Computer Society Press
(May 2014). https://doi.org/10.1109/SP.2014.36

4. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
Short proofs for confidential transactions and more. In: 2018 IEEE Symposium
on Security and Privacy. pp. 315–334. IEEE Computer Society Press (May 2018).
https://doi.org/10.1109/SP.2018.00020

5. Chamanara, S., Ghaffarizadeh, S.A., Madani, K.: The environmental footprint of
bitcoin mining across the globe: Call for urgent action. Earth’s Future 11(10),
e2023EF003871 (2023)

6. Christ, M., Choi, K., McKelvie, W., Bonneau, J., Malkin, T.: Accountable secret
leader election (2024)

7. David, B., Gazi, P., Kiayias, A., Russell, A.: Ouroboros praos: An adaptively-
secure, semi-synchronous proof-of-stake blockchain. In: Nielsen, J.B., Rijmen, V.
(eds.) EUROCRYPT 2018, Part II. LNCS, vol. 10821, pp. 66–98. Springer, Cham
(Apr / May 2018). https://doi.org/10.1007/978-3-319-78375-8 3

8. Digiconomist: Bitcoin energy consumption index (2025), https://

digiconomist.net/bitcoin-energy-consumption
9. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification

and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO’86. LNCS, vol. 263,
pp. 186–194. Springer, Berlin, Heidelberg (Aug 1987). https://doi.org/10.1007/
3-540-47721-7 12

10. Ganesh, C., Orlandi, C., Tschudi, D.: Proof-of-stake protocols for privacy-aware
blockchains. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part I. LNCS,
vol. 11476, pp. 690–719. Springer, Cham (May 2019). https://doi.org/10.1007/
978-3-030-17653-2 23

11. Giunta, E., Stewart, A.: Unbiasable verifiable random functions. In: Joye, M.,
Leander, G. (eds.) EUROCRYPT 2024, Part IV. LNCS, vol. 14654, pp. 142–167.
Springer, Cham (May 2024). https://doi.org/10.1007/978-3-031-58737-5 6

9

https://ccaf.io/cbnsi/cbeci
https://doi.org/10.1109/CSF49147.2020.00030
https://doi.org/10.1109/CSF49147.2020.00030
https://doi.org/10.1109/CSF49147.2020.00030
https://doi.org/10.1109/CSF49147.2020.00030
https://doi.org/10.1109/SP.2014.36
https://doi.org/10.1109/SP.2014.36
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1007/978-3-319-78375-8_3
https://doi.org/10.1007/978-3-319-78375-8_3
https://digiconomist.net/bitcoin-energy-consumption
https://digiconomist.net/bitcoin-energy-consumption
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-030-17653-2_23
https://doi.org/10.1007/978-3-030-17653-2_23
https://doi.org/10.1007/978-3-030-17653-2_23
https://doi.org/10.1007/978-3-030-17653-2_23
https://doi.org/10.1007/978-3-031-58737-5_6
https://doi.org/10.1007/978-3-031-58737-5_6

12. Goldberg, I., Moore, T. (eds.): FC 2019, LNCS, vol. 11598. Springer, Cham (Feb
2019)

13. Goodell, B., Noether, S., Blue, A.: Concise linkable ring signatures and forgery
against adversarial keys. Cryptology ePrint Archive, Paper 2019/654 (2019), https:
//eprint.iacr.org/2019/654

14. Hinteregger, A., Haslhofer, B.: Short paper: An empirical analysis of monero cross-
chain traceability. In: Goldberg and Moore [12], pp. 150–157. https://doi.org/
10.1007/978-3-030-32101-7 10

15. Kerber, T., Kiayias, A., Kohlweiss, M., Zikas, V.: Ouroboros crypsinous: Privacy-
preserving proof-of-stake. In: 2019 IEEE Symposium on Security and Privacy. pp.
157–174. IEEE Computer Society Press (May 2019). https://doi.org/10.1109/
SP.2019.00063

16. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: A provably secure
proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017,
Part I. LNCS, vol. 10401, pp. 357–388. Springer, Cham (Aug 2017). https://
doi.org/10.1007/978-3-319-63688-7 12

17. Kohlweiss, M., Madathil, V., Nayak, K., Scafuro, A.: On the anonymity guarantees
of anonymous proof-of-stake protocols. In: 2021 IEEE Symposium on Security
and Privacy. pp. 1818–1833. IEEE Computer Society Press (May 2021). https:
//doi.org/10.1109/SP40001.2021.00107

18. Kumar, A., Fischer, C., Tople, S., Saxena, P.: A traceability analysis of monero’s
blockchain. In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017,
Part II. LNCS, vol. 10493, pp. 153–173. Springer, Cham (Sep 2017). https://
doi.org/10.1007/978-3-319-66399-9 9

19. Mazieres, D.: The stellar consensus protocol: A federated model for internet-level
consensus. Stellar Development Foundation 32(4), 1–45 (2015)

20. Micali, S., Rabin, M.O., Vadhan, S.P.: Verifiable random functions. In: 40th FOCS.
pp. 120–130. IEEE Computer Society Press (Oct 1999). https://doi.org/10.1109/
SFFCS.1999.814584

21. Möser, M., Soska, K., Heilman, E., Lee, K., Heffan, H., Srivastava, S., Hogan,
K., Hennessey, J., Miller, A., Narayanan, A., Christin, N.: An empirical analysis
of traceability in the monero blockchain. PoPETs 2018(3), 143–163 (Jul 2018).
https://doi.org/10.1515/popets-2018-0025

22. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)

23. sowle, koe: Zarcanum: A proof-of-stake scheme for confidential transactions with
hidden amounts. Cryptology ePrint Archive, Report 2021/1478 (2021), https:
//eprint.iacr.org/2021/1478

24. Van Saberhagen, N.: Cryptonote v 2.0 (2013)

25. Wang, C., Pujol, D., Nayak, K., Machanavajjhala, A.: Private proof-of-stake
blockchains using differentially-private stake distortion. In: Calandrino, J.A.,
Troncoso, C. (eds.) USENIX Security 2023. pp. 1577–1594. USENIX As-
sociation (Aug 2023), https://www.usenix.org/conference/usenixsecurity23/
presentation/wang-chenghong

26. Werner, S.M., Perez, D., Gudgeon, L., Klages-Mundt, A., Harz, D., Knottenbelt,
W.J.: Sok: Decentralized finance (defi) (2022), https://arxiv.org/abs/2101.08778

27. Wijaya, D.A., Liu, J.K., Steinfeld, R., Liu, D., Yu, J.: On the unforkability of
monero. In: Galbraith, S.D., Russello, G., Susilo, W., Gollmann, D., Kirda, E.,
Liang, Z. (eds.) ASIACCS 19. pp. 621–632. ACM Press (Jul 2019). https://
doi.org/10.1145/3321705.3329823

10

https://eprint.iacr.org/2019/654
https://eprint.iacr.org/2019/654
https://doi.org/10.1007/978-3-030-32101-7_10
https://doi.org/10.1007/978-3-030-32101-7_10
https://doi.org/10.1007/978-3-030-32101-7_10
https://doi.org/10.1007/978-3-030-32101-7_10
https://doi.org/10.1109/SP.2019.00063
https://doi.org/10.1109/SP.2019.00063
https://doi.org/10.1109/SP.2019.00063
https://doi.org/10.1109/SP.2019.00063
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1109/SP40001.2021.00107
https://doi.org/10.1109/SP40001.2021.00107
https://doi.org/10.1109/SP40001.2021.00107
https://doi.org/10.1109/SP40001.2021.00107
https://doi.org/10.1007/978-3-319-66399-9_9
https://doi.org/10.1007/978-3-319-66399-9_9
https://doi.org/10.1007/978-3-319-66399-9_9
https://doi.org/10.1007/978-3-319-66399-9_9
https://doi.org/10.1109/SFFCS.1999.814584
https://doi.org/10.1109/SFFCS.1999.814584
https://doi.org/10.1109/SFFCS.1999.814584
https://doi.org/10.1109/SFFCS.1999.814584
https://doi.org/10.1515/popets-2018-0025
https://doi.org/10.1515/popets-2018-0025
https://eprint.iacr.org/2021/1478
https://eprint.iacr.org/2021/1478
https://www.usenix.org/conference/usenixsecurity23/presentation/wang-chenghong
https://www.usenix.org/conference/usenixsecurity23/presentation/wang-chenghong
https://arxiv.org/abs/2101.08778
https://doi.org/10.1145/3321705.3329823
https://doi.org/10.1145/3321705.3329823
https://doi.org/10.1145/3321705.3329823
https://doi.org/10.1145/3321705.3329823

28. Yu, J., Au, M.H.A., Veŕıssimo, P.J.E.: Re-thinking untraceability in the CryptoNote-
style blockchain. In: Delaune, S., Jia, L. (eds.) CSF 2019 Computer Security
Foundations Symposium. pp. 94–107. IEEE Computer Society Press (2019). https:
//doi.org/10.1109/CSF.2019.00014

29. Yu, Z., Au, M.H., Yu, J., Yang, R., Xu, Q., Lau, W.F.: New empirical traceability
analysis of CryptoNote-style blockchains. In: Goldberg and Moore [12], pp. 133–149.
https://doi.org/10.1007/978-3-030-32101-7 9

11

https://doi.org/10.1109/CSF.2019.00014
https://doi.org/10.1109/CSF.2019.00014
https://doi.org/10.1109/CSF.2019.00014
https://doi.org/10.1109/CSF.2019.00014
https://doi.org/10.1007/978-3-030-32101-7_9
https://doi.org/10.1007/978-3-030-32101-7_9

	 StakeNote - A Proof-of-Stake Protocol for CryptoNote Payments
	Introduction
	StakeNote Protocol
	Stake Snapshot
	Construction
	Enhancement: Fixed Staking Output Value

	Discussion

