
Axelar Gateway v2.1

Smart Contract Audit

March 01, 2022

Common Prefix

2

Overview
Introduction
Common Prefix was commissioned to perform a security audit on Axelar’s

cgp-solidity-gateway-2.1.0 smart contracts. The files inspected are the following:

AxelarGatewayProxyMultisig.sol

AxelarGatewayProxy.sol

ERC20.sol

Ownable.sol

ERC20Permit.sol

AxelarGatewayProxySinglesig.sol

AxelarGatewayMultisig.sol

AxelarGatewaySinglesig.sol

ECDSA.sol

DepositHandler.sol

AdminMultisigBase.sol

MintableCappedERC20.sol

Context.sol

AxelarGateway.sol

EternalStorage.sol

BurnableMintableCappedERC20.sol

3

Findings Severity Breakdown
The findings are classified under the following severity categories according to the impact and

the likelihood of an attack.

Level Description

Critical Logical errors or implementation bugs that are easily exploited and may
lead to any kind of loss of funds

High Logical errors or implementation bugs that are likely to be exploited and
may have disadvantageous economic impact or contract failure

Medium Issues that may break the intended contract logic or lead to DoS attacks

Low Issues harder to exploit (exploitable with low probability), clumsy logic
or implementation that lead to poor contract performance

Informational Advisory comments and recommendations that could help make the
codebase clearer, more readable and easier to maintain

Disclaimer
Note that this audit does not give any warranties on the bug-free status of the given smart

contracts, i.e. the evaluation result does not guarantee the nonexistence of any further findings

of security issues. This audit report is intended to be used for discussion purposes only. We

always recommend proceeding with several independent audits and a public bug bounty

program to ensure the security of the project.

4

Findings
Critical
None found.

High
None found.

Medium
None found.

Low

LOW-1 Clumsy implementation of ERC20 inheritance

Contract(s) ERC20Permit,MintableCappedERC20

Status Open

Description

In MintableCappedERC20.sol the ERC20 contract is essentially imported and inherited twice,

since ERC20Permit.sol also imports it and inherits from it. At the same time, ERC20Permit

contract does not construct an ERC20 instance, though it should.

/// MintableCappedERC20.sol
import { ERC20 } from './ERC20.sol'; // CP: also imported in ERC20Permit
import { ERC20Permit } from './ERC20Permit.sol';
import { Ownable } from './Ownable.sol';

5

// CP: ERC20 should omitted
contract MintableCappedERC20 is ERC20, ERC20Permit, Ownable {

uint256 public cap;

constructor(
string memory name,
string memory symbol,
uint8 decimals,
uint256 capacity
// CP: ERC20 should be constructed in ERC20Permit instead

) ERC20(name, symbol, decimals) ERC20Permit(name) Ownable() {
cap = capacity;

}

// ...
}

/// ERC20Permit.sol
import { ERC20 } from './ERC20.sol';

abstract contract ERC20Permit is ERC20 {

constructor(string memory name) {
DOMAIN_SEPARATOR = keccak256(

abi.encode(
DOMAIN_TYPE_SIGNATURE_HASH,
keccak256(bytes(name)),
keccak256(bytes('1')),
block.chainid,
address(this)

)
);

}
/// ...

}

Recommendation

We suggest removing the duplicates import/inheritance and construct the ERC20 instance in the

constructor of ERC20Permit contract.

6

Informational-Suggestions

INFO-2 Inconsistent way of checking the validOwners and validOperators

Contract(s) AxelarGateWayMutlisig

Status Open

Description

In AxelarGateWayMutlisig::_execute valid owners of the current active ownerEpoch are checked

in a separate function than the rest of the recent enough epochs. On the contrary, the validity of

the operators either of the current or of any other recent enough operatorEpoch is performed

within a single function. However, there seems to be no reason for such a differentiation, since

function _areValidOwnersInEpoch() is nowhere else used.

if (signersRole == Role.Owner) {
areValidCurrentOwners = _areValidOwnersInEpoch(_ownerEpoch(), signers);
areValidRecentOwners = areValidCurrentOwners || areValidPreviousOwners(signers);

} else if (signersRole == Role.Operator) {
areValidRecentOperators = _areValidRecentOperators(signers);

}

Under this scope, we see no reason not to have a simpler _areValidRecentOwners() function, just

like the one checking the validity of operators.

Recommendation

We suggest substituting function AxelarGateWayMutlisig::areValidPreviousOwners with

one similar to AxelarGateWayMutlisig::areValidRecentOperators and thus enhance code

consistency but also simplify the checks in AxelarGateWayMutlisig::_execute.

7

About Common Prefix
Common Prefix is a blockchain research, development, and consulting company consisting of a

small number of scientists and engineers specializing in many aspects of blockchain science.

We work with industry partners who are looking to advance the state-of-the-art in our field to

help them analyze and design simple but rigorous protocols from first principles, with provable

security in mind.

Our consulting and audits pertain to theoretical cryptographic protocol analyses as well as the

pragmatic auditing of implementations in both core consensus technologies and application

layer smart contracts.

https://commonprefix.com/

