
Bifrost
SLPx for Astar zkEVM

Smart Contracts Audit

Mar 8, 2024



Overview
Introduction

Common Prefix was commissioned to perform a security audit on Bifrost’s’ SLPx for AstarZk

smart contracts, at commit hash e64ea84b955b57f8fd8602b38ba10bf46b307456. The files

inspected are the following:

├── AstarReceiver.sol

├── AstarZkSlpx.sol

└── DerivativeContract.sol

Protocol Description

Bifrost's SLPx pallet enables users to mint vTokens on a target chain within the Polkadot

ecosystem without the need to manually bridge their initial tokens to Bifrost. Through XCM, the

tokens are transferred to Bifrost, where vTokens are minted and subsequently transferred back

to the target chain.

The focus of this audit pertains to the SLPx contracts specifically tailored for scenarios where

the target chain is Astar zkEVM, a zkEVM chain that operates independently from Polkadot. As

the XCM pallet cannot be utilized directly in Astar zkEVM, ASTR (the native token of the Astar

parachain) serves as the intermediary asset and is transferred to Astar zkEVM as an OFT

(On-Chain Fungible Token). These tokens within Astar zkEVM are then employed to mint

vTokens. This process involves sending the tokens to the Astar parachain via Layer Zero.

Subsequently, within the Astar parachain, the XCM pallet facilitates the transfer of ASTR to

Bifrost, where vASTR tokens are minted. Users can then claim these vTokens and bring them

back to AstarZk (Note: the team has changed this part and the user does not have to manually

claim his tokens back to Astar, see Alleviation of issue LOW-1).

Similarly, users can redeem their vTokens held on AstarZk for the original tokens.

1

https://github.com/bifrost-finance/slpx-contracts/tree/e64ea84b955b57f8fd8602b38ba10bf46b307456


Disclaimer

Note that this audit does not give any warranties on the bug-free status of the given smart

contracts, i.e. the evaluation result does not guarantee the nonexistence of any further findings

of security issues. This audit report is intended to be used for discussion purposes only.

Functional correctness should not rely on human inspection but be verified through thorough

testing. We always recommend proceeding with several independent audits and a public bug

bounty program to ensure the security of the project.

Findings Severity Breakdown

The findings are classified under the following severity categories according to the impact and

the likelihood of an attack.

Level Description

Critical Logical errors or implementation bugs that are easily exploited and
maylead to any kind of loss of funds

High Logical errors or implementation bugs that are likely to be exploited and
may have disadvantageous economic impact or contract failure

Medium Issues that may break the intended contract logic or lead to DoS attacks

Low
Issues harder to exploit (exploitable with low probability), issues that lead
to poor contract performance, clumsy logic or seriously error-prone
implementation

Informational Advisory comments and recommendations that could help make the
codebase clearer, more readable and easier to maintain

2



Findings
Critical

No critical issues found.

High

No high issues found.

Medium

MEDIUM-1 Potential reversion of transactions due to high _minAmount in
OFTWithFee::sendAndCall

Contract(s) AstarZkSlpx.sol

Status Resolved

Description

In the AstarZkSlpx::mint function, the sendAndCall function of the OFTWithFee

contract is called with _minAmount set equal to the entire _amount. However, the

sendAndCall function in OFTWithFee subtracts a dust amount from _amount to ensure it

aligns with specific requirements. Consequently, the final _amount may be less than

3



_minAmount, causing the transaction to revert due to the condition in sendAndCall that

_amount after deducting dust must exceed _minAmount.

Recommendation

We suggest adjusting the _minAmount parameter passed to sendAndCall to be a percentage

of _amount or, ideally, set it to _amount - dust, where dust is computed as per the logic

within the OFTWithFee contract. Alternatively, an extra argument _minAmount could be added

in mint, allowing the user to decide the _minAmount.

Alleviation

The team fixed the issue at commit hash 3bf061b737b641363332b4410caf3034a90dfd21,

setting a _minAmount equal to _amount/2.

Low

LOW-1 Lack of access control for claimVAstr and claimAstr functions

Contract(s) AstarReceiver.sol

Status Resolved

Description

The functions claimVAstr and claimAstr are currently callable by anyone. These functions

facilitate the transfer of vASTR and ASTR, respectively, from the Astar parachain back to the

originating address at AstarZk, i.e. to the address initially requested minting or redemption.

However, there is currently no access control mechanism in place for these functions.

4

https://github.com/bifrost-finance/slpx-contracts/commit/3bf061b737b641363332b4410caf3034a90dfd21


Consequently, anyone can invoke them and determine when these tokens are sent back to their

respective owners on AstarZk.

While there is no risk of fund loss, and moreover whoever calls these functions will have to pay

the fees for the cross-chain transfers, we believe that owners should have the privilege to decide

when they wish to transfer their tokens back.

Recommendation

We recommend implementing access control for these functions, allowing them to be callable

only when the argument addrmatches msg.sender.

Alleviation

The team fixed the issue at commit hashes 823f33bb4584f2ad10d68a09ce047b4be23da14d

and b4d20d1a3ea3425b0da8683b3d39db0e93701bbe. The claim functions are now callable

only by a specific address (scriptTrigger) controlled by the team. The user does not have to

claim back his tokens to Astar zkEVM and this task is taken by this address. This simplifies the

UX, but of course requires a certain trust to the team, that it will actually call the claim functions

and will not leave the user's tokens locked in the DerivativeContract.

Informational/Suggestions

INFO-1 Redundant function getXtokensDestination

Contract(s) AstarReceiver.sol

Status Resolved

5

https://github.com/bifrost-finance/slpx-contracts/commit/823f33bb4584f2ad10d68a09ce047b4be23da14d
https://github.com/bifrost-finance/slpx-contracts/commit/b4d20d1a3ea3425b0da8683b3d39db0e93701bbe


Description

The getXtokensDestination function within the AstarReceiver contract is marked as

internal but is never called by any other function within the contract. Consequently, its presence

serves no purpose and adds unnecessary complexity to the contract.

Recommendation

We recommend removing the getXtokensDestination function from the contract to

improve clarity.

Alleviation

The team fixed the issue at commit hash a2740181b7bf0ca02c377f5cd4b3748a70bc90b5,

removing the redundant function.

INFO-2 Variables could be immutable

Contract(s) AstarReceiver.sol, AstarZkSlpx.sol, DerivativeContract.sol

Status Resolved

Description

The variables astarZkSlpx, VASTR and destChainId of the AstarReceiver.sol,

astrOFTWithFee, vAstrOFT and destChainId of AstarZkSlpx.sol and

astarReceiver of DerivativeContract.sol are set only in the constructor, therefore they

could be immutable to deduce the contracts’ storage and improve efficiency.

Alleviation

The team fixed the issue at commit hash eac7bdb89996af89e976dbe8ac4c5d7f20c32099,

replacing the variables with constants.

6

https://github.com/bifrost-finance/slpx-contracts/commit/a2740181b7bf0ca02c377f5cd4b3748a70bc90b5
https://github.com/bifrost-finance/slpx-contracts/commit/eac7bdb89996af89e976dbe8ac4c5d7f20c32099


INFO-3 Implement sanity checks in AstarReceiver::onReceive function

Contract(s) AstarReceiver.sol

Status Resolved

Description

Currently, the _srcChainId and _srcAddress arguments of the

AstarReceiver::onReceive function are not utilized. However, incorporating sanity checks

utilizing these parameters could enhance security and ensure that transactions originate from

the expected source.

Recommendation

We suggest implementing sanity checks within the onReceive function to validate that the

source chain corresponds to AstarZk and that the source address matches the OFT address

associated with vASTR or ASTR on AstarZk.

Alleviation

The team fixed the issue at commit hash 9920deccd9306668043ce040de47bf6dbb98ccfb,

adding the suggested sanity checks.

7

https://github.com/bifrost-finance/slpx-contracts/commit/9920deccd9306668043ce040de47bf6dbb98ccfb


About Common Prefix

Common Prefix is a blockchain research, development, and consulting company consisting of a

small number of scientists and engineers specializing in many aspects of blockchain science.

We work with industry partners who are looking to advance the state-of-the-art in our field to

help them analyze and design simple but rigorous protocols from first principles, with provable

security in mind.

Our consulting and audits pertain to theoretical cryptographic protocol analyses as well as the

pragmatic auditing of implementations in both core consensus technologies and application

layer smart contracts.

8


