
Harmony Privacy Report

Common Prefix

May 2022, Version 1.1

1 Introduction

This report explores existing solutions for private transactions in blockchains,
with a focus on their applicability for use on the Harmony blockchain. Harmony
is a proof of stake blockchain with an account model for transactions. Addi-
tionally, it supports EVM-compatible smart contracts and features sharding to
improve scaling. While there exists a plethora of solutions in the bibliography,
most of them are defined in a setting that differs from Harmony’s.

The aim of this report is to provide a short overview of these solutions and
offer insight into the process of adapting them to Harmony. Section 2 provides
some necessary background on the cryptographic tools and primitives that are
used in there solutions. Sections 3 and 4 describe on-chain and smart contract
based solutions respectively. Section 5 highlights a number of common chal-
lenges to be overcome when implementing and deploying a private transaction
solution. Finally, 6 concludes the report with a number of recommendations for
action.

2 Background

2.1 Homomorphic Commitments

Cryptographic commitment schemes allow a party to present an obscured view
of some value to their counter party while guaranteeing they are unable to later
change their mind. Concretely, we say that a commitment scheme is hiding if
no adversary can determine if a given commitment c corresponds to message
m0 or m1, even when the messages are chosen by the adversary. A commitment
scheme is binding if it is infeasible for an adversary to prove a commitment c
corresponds to two different messages m0,m1 even when given free choice over
c,m0,m1.

A commitment scheme is homomorphic, if carrying out an operation (e.g.
multiplication) in the commitment space corresponds to an operation on the
message space. In applications, this allows for calculations to be performed
over committed values without the need to reveal them.

1

2.1.1 Pedersen Commitments

Given a group G, g of order q, where the discrete log problem is presumed hard
and an element h we commit to a message m ∈ Zq as follows:

Com(m) : r ← Zq; c← gmhr; Return (c, r)

The commitment c can be used as a representation of m, whereas the ran-
domizer or nullifier r is used as proof that c indeed corresponds to m. For ease
of notation, we will also use Com(m, r) to refer to c = gmhr.

V er(c,m, r) : if c = gmhr return 1 else return 0

The binding property holds computationally for the Pedersen commitment
scheme (i.e., an adversary who is able to solve discrete logs would be able to
open a single commitment in multiple ways), however the hiding property holds
unconditionally. Even with unlimited computational resources an adversary
cannot recover the commited message: for a given commitment c there exists
an opening for every possible message.

The pedersen commitment scheme is additively homomorphic, so that mul-
tiplication between commitments corresponds to addition modulo q between the
commited values and randomizers.

Com(m, r) · Com(k, s) = Com(m+ k, r + s)

2.2 Homomorphic Encryption

Whereas commitments intend to obscure a value so that the sender is later able
to reveal it, encryption intends to obscure it so that only the recipient is able to
reveal it. Public key encryption operates by allowing each receiver to generate
a key pair ek, dk so that senders are able to encrypt messages for them using
only ek which they are, then, able to open using dk.

Encryption schemes are related to commitments: one may consider a public
key encryption scheme as a commitment by allowing the encrypting party to save
and reuse the corresponding randomness. Uniqueness of decryption implies per-
fect binding, otherwise encrypted messages would be ambiguous. On the other
hand, the (computationally prohibitive) possibility1 of an adversary deriving
dk from ek implies that hiding can only be computational. Constructions such
as Zether (Sect. 4.3) and Quisquis (Sect. 3.6) are examples where the require-
ment for users to decrypt their balances necessitates the use of encryption-based
commitments.

1A trivial idea would be to iterate over all the possible random choices of the key generator
and keep the output that produces ek as the encryption key. The corresponding decryption
key must be effectively unique, as otherwise decryption would be ambiguous.

2

2.2.1 Lifted ElGamal Encryption

This popular variant of the ElGamal encryption scheme is additively homomor-
phic at the cost of introducing potential inefficiencies in decryption. It operates
in a group G, g of order q, where the Decisional Diffie-Hellman (DDH) problem is
presumed hard, and has message and randomizer spaceM,R = Zq. The DDH
problem in a group (G, g, q) involves distinguishing between random triples of
the form ga, gb, gc and triples of the form ga, gb, gab (DDH triples).

Gen() : Let dk ← Zq; ek ← gdk, Return (dk, ek)

Enc(ek,m) : Let r ← Zq;u← gr; v ← ekrgm, Return c = (u, v)

Dec(c, dk) : Let (u, v) = s, let w ← v · u−dk, Return m = logg (w).

It is clear from the above that the textbook decryption of lifted ElGamal is
not tractable in the general case, as we need to calculate a discrete logarithm.
Under the assumption that the message m is bounded, e.g. a n-bit integer,
decryption becomes tractable (with O(2

√
n) time and space cost). It is also

possible to verify a given value of m from an external source against the w
produced via decryption. Thus, the inefficiency of decryption can often be
avoided (cf. Section 4.3).

2.3 Collision Resistant Hash Functions

A hash function h is collision resistant if it is infeasible for an adversary to pro-
duce x1, x2 such that h(x1) = h(x2). This is equivalent to the binding property
of a commitment, and implies we can use collision resistant hash functions as
binding commitments with no modifications. A hash function is one-way if it
is infeasible to derive x∗ from h(x) such that h(x∗) = h(x) (x∗ itself may or
may not equal x). Without adding some source of randomness, this is strictly
weaker than the (similar) hiding property of a commitment: given m1,m2 one
can determine if c = h(m1) or c = h(m2) even if h is one-way.

2.4 Merkle Trees

A Merkle Tree is a data structure that allows one to commit to a large number
of independent values v1, . . . , vN of arbitrary size so that:

• The commitment will be constant size.

• The size of the proof2 that vi is contained in c will be logarithmic in N .

For simplicity, we assume that the maximum size of the tree is N = 2n and
that it is known in advance. In the general case, we can ensure this by padding
with an appropriate vector of null values. We then have:

2discounting the size of vi itself.

3

• MTCom(v0, . . . vk−1):

– Assign item vi to each of the first k leaves of the tree. Assign a
default value vdef = 0 to all other leaves. If k > N , abort.

– Label each leaf i with the hash of its assigned value h(vi).

– Recursively label each internal node of the tree with h(L||R) where
L,R are the labels of its left and right child respectively.

– Let T be the label of the root, return T .

• MTV er(T, v, i,p) : Checks that value v is contained in index i of a tree
with root T along audit path p = pj.

– Let dj be the j-th digit of i in binary, d0 being the LSB, let d̄j = 1−dj .
– h0 ← h(v)

– For i = 1 to n:
hi ← h(pi · di + hi−1 · d̄i||pi · d̄i + hi−1 · di)

– If hn = T , Return 1, else Return 0.

Verification consists of the value that is claimed to be present in the tree, its
index, and the labels of nodes in the complement of the path from the indexed
leaf to the root.

2.4.1 Updating Merkle Trees

In our context we will require appending values to an existing tree, but not
removing them (or updating them). A simple approach to appending would be
to recreate the entire tree, but that would imply that (a) the entirety of the
tree contents must be made available during the update and (b) the cost will
be linear in the number of items already present in the tree. Fortunately, it is
simple to define a small set of data that can be used to speed up updates so
that their cost is similar to that of verification.

For a tree that contains k items, consider the audit path and labels for the
first empty leaf, with index k and value vk = vdef = 0. If we populate leaf k
by setting its value to vk ̸= 0, the audit path is sufficient to recompute the new
root. In this way, we can use the audit path of the first empty leaf as a cache: we
can then update the root using the cache at the same cost as verification. What
remains is to update the cache for the next insertion: this is straightforward as
the labels of the new audit path will either be values we have just derived or
defaults (i.e., hashes of subtrees containing only zeroes).

2.4.2 Proving Non-Inclusion

Standard Merkle Trees can produce very efficient membership proofs, but not
proofs of non-membership. For that, we may use either sorted or sparse Merkle
Trees.

4

Using a sorted Merkle Tree, we can demonstrate that value v is not present
by proving that there exist values s < v and t > v that are present in leaves
with consecutive indexes. Because the tree is sorted, there is no valid index
for v, proving non-inclusion. The difficulty with sorted Merkle Trees lies in the
complexity of updating them: efficient techniques make the tree depth non-
constant which in turn makes circuit representations of tree operations much
more complex.

A simpler approach is to use a (larger) sparse Merkle tree with the convention
that a leaf with index i has label h(0) if value i is not present and label h(1) if
it is.

2.4.3 Sparse Merkle Trees

Compared to a standard Merkle Tree, a sparse Merkle tree [DPP16; Öst16]
is larger as it needs to account for every possible entry (rather than a maxi-
mum number of arbitrary entries), and it also needs to account for updates to
arbitrary indexes (rather than only sequentially).

During the initial construction, the size of the tree can be addressed by
caching default values: an empty tree has identical internal nodes across each
level, so the effort to initialize a Sparse Merkle tree is linear to its depth.

Caching default values can also be used when constructing audit proofs by
encoding them in a succinct way. However, this approach has limited benefits
when used with circuit-based verification.

2.4.4 Updating Sparse Merkle Trees

Tree updates can still be performed efficiently by using a cache, but the size
and structure of it are larger and more complex. Instead of needing to cache at
most 1 non-default value per level, we will need to cache one value per branch.
We say that an internal node is a branch if the labels of both its parents are
non-default. The results of Östersjö [Öst16] show that caching the tree contents,
default values and branch labels is sufficient to obtain good update performance.
This makes sparse Merkle trees expensive to maintain storage-wise from the
prover side, while still providing adequate verifier performance and acceptable
proof size.

2.5 Digital Signatures

A digital signature enables a signer to certify that a message m has in fact been
approved by her. Similar to public key encryption, a signature scheme uses a
public-private keypair and three algorithms Gen,Sign,Ver for key generation,
signing and signature verification.

A secure digital signature must be correct (verification should succeed for
properly signed messages) and unforgeable, i.e., an adversary must be unable to
produce verifying signatures w.r.t. honest parties apart from copies of already-
produced signatures. The allowance of replaying past signatures in the definition

5

of unforgeability is natural, but at the same time implies that replay attacks
must be handled at a higher level: in usual blockchain applications replaying
an existing signature would be considered a double-spending attack.

2.5.1 Schnorr Signatures

Schnorr signatures are based on the eponymous identification scheme: given a
public key of the form k = gx, the signer needs to prove knowledge of x (i.e., the
discrete log of h) to the verifier. This is performed via a zero knowledge protocol
so that the value of x is not leaked. Schnorr’s protocol can be used as an inter-
active sigma protocol (Sect. 2.6.1), but in practice it is used non-interactively
via the Fiat-Shamir transformation. The same transformation enables its use
as a signature scheme (as opposed to an identification scheme) by including the
message to be signed in the protocol statement.

Another common use of Schnorr’s protocol is to demonstrate knowledge that
a particular Pedersen commitment has a value of zero, i.e., it can be written as
c = hr for a value r known to the prover.

2.5.2 Ring Signatures

Generalising standard digital signatures, group and ring signatures allow a mem-
ber of a group to sign on behalf of the entire group, without disclosing their
individual identity. In a group signature, membership to the group is controlled
by a group manager who is responsible for, e.g., provisioning credentials or man-
aging a membership roster. Ring signatures on the other hand operate without
a fixed authority: any collection of public keys can be used as a Ring. This al-
lows a user to freely choose a set of other user keys to “hide” amongst, enabling
privacy with decentralization.

A simple way to obtain ring signatures from Schnorr signatures is to directly
use the “OR” construction of CDS [CDS94] to prove that one knows the secret
key of one public key out of a list of public keys, without revealing the wit-
ness. The “OR” construction runs a separate instance of the Schnorr protocol
for each list element, but modifies the challenge: a single joint challenge c is
produced with the additional requirement that the challenges ci used in each
instance must sum to the joint challenge c. Effectively, this gives the prover
freedom to freely choose every challenge but one. Thus, the prover simulates
every instance that does not correspond to their key, calculates the remainder
challenge, and completes the instance corresponding to their key normally. The
zero knowledge property of the underlying scheme implies that the simulated
instances are indistinguishable from the real one.

While the above construction is straightforward, its efficiency is lacking: run-
ning a separate instance for each key requires 2 elements for each ring member.
Improvements in the form of the scheme of Abe et al. [AOS02] and Borromean
signatures [MP15] can reduce this cost to 1 element per member, but do not
address the linear relation.

6

Subsequent protocols starting with the work of Groth and Kohlweiss [GK15]
reduce the size cost to logarithmic in the ring size. In [GK15] and [Boo+15] this
is done by committing to a digit representation of the index of the user’s key, and
proving knowledge of the logarithm of the indexed key, by providing a blinded
opening of the commitments and error terms to account for the blinding. The
communication cost is thus made linear to the number of digits of the group
size, i.e., logarithmic in the group size.

Later work for RingCT 3.0 [Yue+20] achieves similar efficiency with a dif-
ferent formulation: they identify that for a given list of keys Y = y1 . . . yn, the
key with index k is yk = Yvk , where vk is a vector of n bits where only position
k is 1. Thus, their protocols relies on committing a vector, and proving the
necessary properties via an efficient logarithmic argument.

2.5.3 Linkable Ring Signatures

When ring signatures are used to authorize payments, a natural question arises
with regards to double spending. When producing single party signatures, it is
trivial to determine if a key has been used more than once. In a ring signature
setting however, this is not trivial. Linkable ring signatures provide a way for
signatures of the same user across different keys to be identifiable either in
general, or in a specific context. This can be accomplished by specifying that
the signer must attach a unique function of their key to their signatures.

In the protocol of Groth and Kohlweiss this is achieved by altering the items
of the list: instead of Schnorr keys of the form gx, the list items are “coins” of
the form gxhr, i.e., Pedersen commitments. Their key observation, is that the hr

term can be safely removed by revealing r and dividing C = gxhr by hr. Even
better, this can be performed without revealing the index, by simply revealing
the nonce r, and dividing each element of the list by hr. The protocol can now
proceed as above, with the caveat that the prover will have to reveal r again
if they try to sign a second time. This is easily detectable, and is unavoidable
unless the prover knows a non-trivial discrete log relation between bases g and
h.

Other schemes [Sun+17; Yue+20] achieve linkability by means of a key image
that is embedded in the signature computation.

2.6 Zero Knowledge Protocols

As a motivating example, consider Confidential Transactions [Maxb]. In a con-
fidential transaction, the values being exchanged are hidden in the form of Ped-
ersen commitments. Whereas it is simple to show that a set of values in the
open balance by calculating the sum of inputs and outputs, this is made non-
trivial when some of the values are hidden: First, one needs to prove that the
sum of inputs minus the sum of outputs is in fact a commitment with value 0.
This can be accomplished without zero knowledge by revealing the randomizer
of the sum, or by using Schnorr signatures (e.g. in Mimblewimble [Jed16] and
related constructions). Second, one needs to prove that none of the outputs

7

have negative values. Otherwise, Alice could buy a $1000 laptop by spending a
$1 input and adding a −$999 change output that she never intends to use again.
The transaction would balance out as 1 = 1000 + (−999), but should in fact be
rejected.

As arithmetic is performed modulo q, these would not be negative values
per se, but by convention; for instance, a natural one would be that values over
q−1
2 are defined to be negative. In practice, we would solve this issue via a

range proof: show that for each output commitment c we know of v, r such
that c = Com(v, r) ∧ v ∈ [0, Vmax], where Vmax is the maximum allowable value
in the application. Of course, we need to accomplish this in zero knowledge
i.e., without revealing anything about v and r other than satisfying the above
requirement.

Zero Knowledge Protocols were originally introduced by Micali, Gold-
wasser, and Rackoff [GMR89] and allow one party (the prover) to demonstrate
that a statement is true without revealing any information other than the valid-
ity of said statement. More formally, for an agreed-upon relation R(x,w) where
R is an efficiently calculable function, the prover discloses a statement x and
proves that there exists (or, in stronger variant that they know of) a witness w
such that R(x,w) is true.

The standard security properties of zero knowledge protocols are (a) com-
pleteness, (b) soundness, and (c) zero knowledge. Completeness demands that
the protocol is successful if both parties are honest and the prover knows a
correct witness w for which R(x,w) = 1. Soundness implies that provers are
unable to prove false statements. In some settings we require a stronger prop-
erty, knowledge soundness, which requires that if a prover is successful in proving
statement x, then not only is x true, i.e., a correct witness w exists, but also
that the prover effectively “knows” said witness. Returning to the CT example,
for any Pedersen commitment c there exist witnesses such that c can be opened
to any value3. However, calculating or “knowing” such a witness is non-trivial:
either the prover created a commitment to known values (which is the intended
result of the protocol) or they are in a position to derive discrete logarithms
between g and h in the commitment scheme. Zero knowledge implies that the
protocol can be simulated under certain conditions which in turn implies that
transcripts of the protocol’s execution cannot reveal the witness to an observer.
In other words, the verifier does not learn any information apart from the exis-
tence of the witness (or the prover’s knowledge thereof).

Finally, for our applications we require that protocols can operate non-
interactively: otherwise the prover and verifier need to be online simultaneously
in order to execute the protocol. Furthermore, unless one verifier trusts another,
the protocol must be executed separately for each verifier, which is not feasible
for our setting.

3But knowing of more than one opening is computationally infeasible in a proper setup.

8

2.6.1 Sigma protocols

A common class of zero knowledge protocols is the family of Sigma (and sigma-
like) protocols. Their main characteristic is that all verifier messages are speci-
fied to be uniformly random with the only non-trivial verification step being in
the final step.

This allows the protocols to be made non-interactive in the random oracle
model [BR93] by using the Fiat-Shamir transformation [FS87]. This replaces
the verifier’s messages with hashes of the protocols transcript up to that point,
effectively collapsing the entirety of the protocol into one round.

Canonically, sigma protocols have three rounds, zero knowledge against hon-
est verifiers4 (HVZK) and a variant of knowledge soundness termed special
soundness.

Schnorr’s protocol for demonstrating knowledge of a discrete logarithm (cf.
Sect. 2.5.1) are one of the most common examples of sigma protocols. The
zero-knowledge property is necessary to maintain security against adversaries
who have access to past signatures. A more complex example is the membership
protocol (and resulting ring signature) of Groth and Kohlweiss [GK15].

2.6.2 Bulletproofs

Bulletproofs [Bün+18] are a powerful proof system which can be used to perform
proofs of arbitrary calculations expressed as an arithmetic circuit, but can also
be highly efficient to perform range proofs of Pedersen commitments.

Bulletproofs have size logarithmic w.r.t to the witness and do not require a
trusted setup. However, the verifier’s computation is considerable as it scales
linearly. This makes bulletproof performance adequate when used in native
code, but potentially problematic if used inside a smart contract.

2.6.3 SNARKs

Succinct non-interactive arguments of knowledge add succinctness to the already
introduced properties of non-interaction and knowledge soundness. Succinctness
requires that (a) the size of the proof is at most logarithmic in respect to the size
of the computation (modelled as a circuit or constraint system) (b) the speed of
verification is logarithmic in respect to the size of the computation and at most
linear in respect to the public statement5.

To achieve such efficiency most SNARKS rely on structured reference strings
(SRS), that is, carefully pre-constructed elements that are used when construct-
ing and verifying the proof. Because they need to be structured (i.e. the various
elements must be related to each other in a particular way) they need to be
constructed rather that simply sampled at random. At the same time, the

4This is rendered moot via the Fiat-Shamir transformation as the verifier‘s messages are
determined via the hash function.

5This is the motivation behind some applications structuring public data in the witness,
and checking for consistency against a known hash.

9

randomness used in their construction is effectively a trapdoor that allows sim-
ulating proofs without knowing a witness. In this sense, the existence of the
trapdoor is a double edged sword: it is used to prove zero knowledge (under the
assumption that the simulator knows it) but in real-world use we must ensure
that the adversary never learns it.

Groth16 [Gro16] is currently the most-used SNARK due to its efficiency with
regards to its small proof size, and secondly, its limited verifier computation.

SRS Setup. In order to ensure that an adversary cannot learn the trapdoor,
we must use multi-party computation protocols [BGM17; Koh+21] to divide the
computation of the SRS amongst multiple parties in such a way that learning
the trapdoor necessitated corrupting all involved parties. This implies that the
SRS is secure as long as at least one participant was honest. Furthermore, any
participant in the MPC ceremony would have reason to trust the SRS unless
they knowingly exposed the randomness they uses or they have reason to believe
they were compromised.

Updateable Setup. A SNARK has updateable [Mal+19] (or semi-trusted)
setup if it is possible for a party to contribute entropy to the SRS even after
it has been produced, producing an updated version (along with a proof of
correctness for their contribution). Concrete examples of such systems include
Sonic and PLONK.

Contrary to what the name implies, the main benefit of the property is that
the initial (i.e., before production use) ceremony can be performed with less
coordination requirements.

Of course, updating the SRS can also be used to allow a new party to
establish trust in the proof system by being allowed to contribute to it. This
contribution however is not retroactive: while the new party will have reason
to trust proofs using the updated SRS for future proofs (because the proofs
now also rely on the entropy they personally supplied), the trust assumptions
for proofs in the past remain unchanged. Furthermore, it is hard to scale SRS
updates so that they can be performed by any interested party: the updates as
well as the accompanying proofs will need to be transmitted to all nodes in the
system.

2.6.4 STARKs

STARKS (Scalable Transparent Arguments of Knowledge) [Ben+18] offer a
trasparent alternative to SNARKS. While asymptotically efficient, and highly
practical in terms of verification time, proof sizes are prohibitive with regards
to direct blockchain inclusion, especially in the case of a smart contract which
would involve additional overheads.

10

2.6.5 Recursive Proof Systems

The works of [Val08],[Bit+13; BGH19] present techniques that can be used to
enable a proof system to model its own verification circuit. This in turn enables
one to construct proofs with statements that include the validity of other proofs.
In this manner a complex statement can be broken into a number of incremental
sub-statements where each subsequent sub-statement consists of (1) a part of
the original statement and (2) a claim that there exists a proof of the previous
sub-statement. The result of this re-organization is that the complexity of the
last statement is equal to that of the last part plus the complexity of the verifi-
cation circuit. Thus, if the original statement is amenable to being subdivided
into parts, the verification cost becomes independent of the complexity of the
statement and is mainly bounded by the complexity of the verification circuit.
In the domain of private transactions, many operations are small enough that
recursive techniques offer no benefit. For this reason, we leave the discussion of
recursive proofs as a potential optimization for a later stage.

3 On-Chain Solutions

3.1 Monero

Monero is a privacy focused blockchain that makes use of ring signatures. In the
initial design, based on the Cryptonote protocol [Van13], privacy was established
by using a linkable ring signature (Sec. 2.5.3) over a set of UTXOs of the same
value for each input of a transaction. In this way, the actual inputs used to
fund a transaction remain obscured, while the linkability property of the ring
signature prevents double spending. This initial design has two main drawbacks:
first, transaction amounts are public. This implies that privacy can only be
established amongst transactions of the same value. Second, the efficiency of
the signature scheme limits the size of the ring, and by extension the anonymity
set of each input. The initial scheme was based on the traceable ring signature of
Fujisaki adn Suzuki [FS07] which has linear size, this led to small ring sizes and a
fragile notion of privacy: if a number of ring elements of a particular transaction
can be attributed to specific users via de-anonymization techniques (see Sect.
5.3), the ring may collapse to a single element, providing a concrete link of
input and output. Furthermore, this link can cascade into later transactions,
eroding their privacy as well.

Later iterations of the protocol address both issues: the later RingCT [Noe15]
construction uses signatures which are still linear in size with respect to the num-
ber of elements but allow for transaction values to be hidden. Furthermore, with
time, the ring size was increased [Wu+22] to 10 elements to increase privacy
and resilience to side channel attacks. However, this increase in the ring size can
still be overcome, especially in transactions with multiple inputs: as the input
and output amounts must be shown to balance, the protocol necessitates that
the actual inputs to the transaction share the same index in their respective
rings. Thus, if, for instance, the third element of the first input is established

11

to have been spent in a different transaction, the third element of each other
input ring can also be disregarded by the adversary. Equivalently, if a single
input is successfully linked, all other inputs will be linked as well. In the more
recent RingCT 3.0 design [Yue+20], the indexes over different rings are allowed
to differ and the signature size is made logarithmic with regards to the size of
the ring using techniques derived from Bulletproofs, allowing for much larger
ring sizes. The computational cost for the verifier also be improved by using
multiexponentiation techniques to go from linear in the number of ring members
to O(n

logn).

3.2 Zerocoin

Zerocoin augments the design of bitcoin with a parallel ledger containing “coins”
of a fixed denomination. Coins are minted, i.e., created by destroying an equiv-
alent value in the original ledger. A coin is represented as cryptographic com-
mitments to a serial number. When a coin is to be spent, its serial number is
revealed and a zero knowledge proof is provided demonstrating that a commit-
ment to the revealed value exists amongst the coin commitments in the parallel
ledger. As the zero knowledge proof does not indicate which commitment is
being spent, the link between the depositor and withdrawer of a coin is broken.
At the same time, this precludes pruning the ledger of spent coins. Zerocoin
addresses this by storing the commitments in a cryptographic accumulator, a
construction that enables a set of values to be represented via a single object
and that supports efficient proofs of membership. As accumulator proofs do not
hide the value that is being proven, zero knowledge proofs need to be leveraged
on top of them in order to facilitate the design.

3.3 Zerocash/Zcash

Zerocash [Sas+14], implemented as ZCash [Hop+] expands on Zerocoin by al-
lowing for commitments to contain arbitrary quantities of funds as opposed to
a fixed denomination, and also for transactions between committed values (i.e.,
joining and splitting existing commitments into new ones). The second change
is necessary to maintain privacy when commitments are not fixed-value: other-
wise, when users are allowed to mint a note of any value, the anonymity set for
the corresponding withdrawal is limited to the set of mints of exactly the same
value. By allowing notes to be spent in part, this issue is completely avoided. A
further consequence of this is that transactions that create commitments must
also prove that the value of such commitments is positive6.

Due to the complexity of the statements being proven, ZCash opts to use a
ZK-SNARK based proof system to reduce the overhead imposed by transmitting
and verifying the accompanying proofs. ZCash also uses a Merkle tree instead
of an accumulator to store the commitments. This reduces both the cost of

6It is not enough that the sums of the inputs equal the sums of outputs: one could simply
create a negatively-valued output to force an underfunded transaction to balance

12

storing the accumulator itself (i.e., the tree root) as well as the computational
cost of updating a membership witness when new values are added.

In addition to allowing join/split transactions Zcash also facilitates transac-
tion discovery. This is performed by adding a short memo field to transactions
so that the sender can add information retrievable by the sender’s long term
keys.

3.4 CoinJoin

CoinJoin, initially described by Maxwell [Maxa] notes that bitcoin transactions
need not be generated by a single entity: instead, a number of users may present
each other with a list of inputs and outputs. After agreeing on both lists, each
user signs the combined transaction with regard to the input UTXOs they con-
trol. While this ensures privacy against outsiders, it is completely linkable to
members of the group. A potential solution, described in the initial design, is to
use a semi-trusted server to ensure coordination (so that the link can only be es-
tablished by the server), and a further improvement is to use blind signatures to
enable members to submit their outputs separately from their inputs. The blind
signature mechanism requires that the submitted inputs and outputs match in
value. This can be accomplished by either fixing the transacted denomination,
or by using more complex cryptographic primitives as in WabiSabi [Fic+21].
Other variants such as Coinshuffle [RMK14] eschew the use of a centralized
server at the cost of higher user to user communication.

3.5 MimbleWimble

MimbleWimble [Poe16] is to some degree a continuation of the CoinJoin con-
cept with the addition of Confidential Transactions (i.e., values are represented
as Pedersen commitments rather than in the open), and a change to the signing
mechanism. Rather than signing individual inputs, the protocol leverages the
homomorphic nature of Pedersen commitments: if the values of the inputs and
outputs balance7, the difference between the sum of input commitments and
output commitments must be a commitment with value zero (or equivalently,
the difference minus the remainder commitment must be the identity in the
group). The transaction is then “signed” by proving knowledge of the random-
ness contained in the remainder. By relaxing the transaction definitions to allow
for multiple signed remainders transactions can be merged by simply merging
their inputs, outputs and remainders.

The end result is that block producers can operate as CoinJoin coordinators
with no additional overhead. While this achieves some level of privacy, some
implementations of MimbleWimble opt to add an additional level of privacy via
a zero knowledge membership protocol [CG21; Jiv19].

7We also require that outputs are positive, necessitating range proofs.

13

3.6 Quisquis

Quisquis [Fau+19] is an anonymous cryptocurrency design in the account model.
It relies heavily on the concept of updateable keys: this allows other users
to effectively re-randomize the keys (and balance encryptions) of other users
without changing the associated secret key. This forms the basis of the scheme:
each transaction includes a set of key, balance) pairs, where key is of the form
gi, h

xi
i and balance is an ElGamal ciphertext under (key. Key updates occur by

raising all elements of the (key, balance) pair to the same random exponent r.
By including the base element gi in the key, this ensures that the value stored
in balance is unchanged. Anonymous transactions are facilitated by including a
number of “dummy” (key, balance) pairs in addition to those of the sender and
recipient. The sender then updates all keypairs, and transfers value v from their
account to the recipients. Also, the sender constructs a zero knowledge proof
that the updates and transfers were well formed, and that the initial balance in
their account is at least v. The recipient (as well as the other involved parties)
identify the transaction via their public key, derive their new public key via
exhaustive search and update their public key and balance as needed.

A significant efficiency benefit of Quisquis is its use of the account model,
limiting the state of its ledger to only the current keys of users and their balance.
However, the short-lived nature of Quisquis addresses creates issues with con-
current transactions, as a key used by a prepared transaction might have been
updated in the meantime. Futhermore, users need to spend effort in updating
their key since the prescribed method of updating requires the secret key and
thus cannot be easily outsourced.

4 Smart Contracts

4.1 Möbius

Möbius [MM18] is a minimal, trustless mixer with anonymous payment func-
tionality. That is, it allows Alice (in conjunction with Bob) to perform a deposit
that can be withdrawn by Bob, but not Alice. Möbius uses a fixed denomination
for all deposits, as well as a preset, fixed ring size representing the number of de-
posits allowed before the ring is considered full. Withdrawals are not permitted
before the ring has been filled. Once the ring is full, withdrawals are performed
via a linkable link signature, allowing each deposit to be withdrawn only once.
The scheme uses the signature scheme of Franklin and Zhang [FZ13], but other
options may be leveraged.

The scheme does not rely on a trusted setup, but as a consequence, requires
size and computation linear to the fixed size of the ring. For a ring of size n, the
originally published version quotes a cost of 335, 714n gas for each withdrawal
transaction, but pre-dates EIP-1108 which made vast improvements to ECC
operations. A more recent implementation available at https://github.com/
clearmatics/mobius quotes 725k for n = 4 while still predating EIP-1108.
The verification of Möbius involves approx 4n point-scalar multiplications, so

14

the benefits of EIP-1108 would be approximately 4n∗(40.000−6.000) or, almost
a 75% reduction in gas. While the asymptotics of Möbius remain unfavourable,
for (very) small rings it can outcompete SNARK-based solutions.

Another point of interest on Möbius is that of liveliness and capacity: as
it has a fixed capacity of ring members there needs to be a mandated solution
when a ring has failed to fill past a certain date: the paper suggests offering
refunds or (as an alternative) allowing a reduced ring size. At the same time,
the capacity of a single ring is very limited, suggesting the use of multiple
copies of the contract or separate ring-spaces within a single contract. Ideally,
rings that have been fully withdrawn can be reused by allowing them to be
re-initialised. A complication is possible when a filled ring has been withdrawn
only partly: it might be beneficial to mandate that deposits must be withdrawn
within a fixed period after the last deposit, as this will ensure that rings are
emptied out in a timely manner. Note however, that it is not feasible to return
unclaimed deposits after withdrawals have started; the contract does not know
which deposits have been spent and which have not, therefore the deposits need
to be claimed by the recipient.

4.2 TornadoCash

TornadoCash [Aleb] is a smart-contract based solution that offers the equivalent
of fixed-denomination mixing. Deposited funds are represented as hash-based
commitments, each containing a two-part nullifier, stored in an append-only
Merkle Tree, similar to Zerocoin modulo differences in function choices. Odd
sums are handled by splitting them into the fixed denominations supported.
This is somewhat conductive to privacy, as the protocol implies a small number
of large anonymity sets. However, as each denomination can be considered
a separate instance of the protocol, transactions in one denomination do not
increase the anonymity pools of others.

When funds are to be withdrawn, a zero-knowledge proof indicates the com-
mitment that is being spent, along with a publicly-posted hash of one part of the
nullifier to prevent double-spending. The zero-knowledge proof is bound to the
withdrawing address, and since it does not reveal the full nullifier, front-running
attacks are not possible.

The design of TornadoCash has been audited [KV] and implemented [Alea].
The main complexities lie in designing the Groth16 verification circuit as well
as handling nullifier storage (see section 5.2). An additional concern involves
concurrency: as deposits will change the Merkle tree holding the deposited
commitments, the contract needs to maintain a buffer of previous roots so that
a withdrawal request is not invalidated because a deposit was executed just
before.

4.2.1 TornadoCash Nova

Nova represents a significant enhancement to the design of TornadoCash, al-
lowing for significantly more complex functionality, i.e., it supports arbitrary

15

(confidential) denominations and internal transactions. Effectively, Nova is to
standard TornadoCash what ZCash is to Zerocoin. While, Nova is not as well
documented as standard TornadoCash, many of the design patterns can be
traced to ZCash which is well documented.

4.3 Zether

Zether is a confidential payment system designed to be compatible with the
Ethereum Virtual Machine (EVM). In effect, it implements a simple account-
model ledger inside a smart contract with the key difference being that balances
are stored encrypted, in a parallel to confidential transactions. However, since
values are encrypted rather than commited, there is no additional requirement
for recipients to be able to use funds. This is in contrast to commitment-
based protocols where the randomness used must either be communicated to
the recipient or derived in a system akin to key agreement (as in ZCash). This
observation is a key pillar of the system’s operation, enabling use of the account
(rather than the UTXO) model. In the UTXO model, there is no practical way
to inconvenience another user by sending them unusable funds: the term itself is
paradoxical. If funds cannot be used by a user, they can be safely ignored. In a
hypothetical commitment-based accounting model, adding a spurious commit-
ment to one’s balance might make the total unusable. While safeguards could
be implemented by requiring deposits to be manually accepted or by requiring
proofs of deposits being derived in a particular fashion as in Quisquis, Zether’s
approach offers an elegant solution to the problem. By using encryption to rep-
resent balance, all that is needed is to demonstrate that balances sent to users
are not negative.

Zether uses the concept of “epochs” to effectively freeze the balance of par-
ties for fixed periods of time. This introduces latency but at the same time
avoids failed transactions due to front-running or race conditions. To achieve
anonymity, Zether uses a modified membership proof: an anonymous trans-
action consists of two non-zero balances that sum to zero, representing the
transaction input and output as well as a number of zero-valued encryptions to
serve as an anonymity set. Each encryption is addressed to a different account.
Additionally, the transaction includes a specifically constructed nonce. The pro-
tocol then proves that (1) only two encryptions are non-zero, (2) all encryptions
sum to zero, (3) the account indexed by the negative-valued encryption holds
balance greater than the absolute value of the encryption, and (4) the attached
nonce is derived from the secret key of the indexed account. The cryptographic
protocols are quite involved, with the authors quoting upwards of 1M gas (tak-
ing EIP-1108 into account) for transfers before adding anonymity overhead. A
later implementation [Dia21] including anonymous transfers quotes 5.6M for an
anonymity set of 4.

Zether also supports the concept of “locking” accounts to smart contracts
so that for each account a smart contract address can be allowed to issue trans-
actions exclusively. Account locking can be used to enable escrow or deposit
functionality without directly revealing the amount at play. Account locking

16

is only partially compatible with anonymous transactions, but Zether also sup-
ports transparent (i.e. non-anonymous) ones as well.

4.4 Mixeth

Mixeth is a solution that relies on cryptographic shuffles [BG12; Nef01] to ensure
privacy akin to a traditional mixnet, as described by Chaum [Cha81]. At a high
level, the design consists of fixed-value deposits, with each deposit linked to
a public key. To remove the link between depositors and keys, a number of
shuffling (i.e. mixing) rounds is performed. In each round, the keys are partly
re-randomized and their order is permuted. A key characteristic of Mixeth is
that the cryptographic proof of the mixing is not checked by the contract in full:
the contract requires a deposit from the shuffler and allows for fraud proofs by
each depositor in the event that the key to their deposit has been dropped by
the shuffler.

The benefit of this approach is that the more costly cryptographic checks are
performed off-chain by the depositors, as opposed to the smart contract. This
reduces gas costs for shuffles as well as deposits. The authors quote withdrawals
at 113k gas, predating EIP-1108 [CWa]. The largest part of this cost is a custom
ECDSA check involving two point-scalar multiplications. Currently, using EIP
1108 would reduce that cost significantly, to ca. 40k gas.

On the other hand, the protocol used requires that every depositor needs to
check every shuffle: checking that a particular public key has not been dropped
requires the corresponding private key. This places a high burden on users,
as they need to be online to perform the corresponding checks in a timely
manner. Additionally, relaxing the time limit for fraud proofs would slow down
the protocol.

A further issue is the identity of the shufflers: Mixer security assumes that
honest parties will always exercises their right to shuffle, but that creates high
participation costs and exacerbates the problem of a receiver being able to fund
the withdrawal transaction: they now need to fund the shuffle as well, or hope
that the sender will perform it (this is a non-issue if one is mixing their own
funds).

SNARK-based proofs can be leveraged to reduce participation requirements
for proof checking, but ensuring that shufflers are using good-quality randomness
is a tougher issue to handle. A design using SNARK-based shuffle proofs and a
set of semi-trusted shufflers (in the sense that no number of malicious shufflers
can reroute funds, and even 1 honest shuffler can establish privacy) can be
produced, but would require significant divergence from the described protocol.

17

5 Challenges

5.1 Harmony-Specific Concerns

5.1.1 Staking & Privacy

The staking mechanism of Harmony relies on an auction mechanism that assigns
verification slots to bidders. Holders of small amounts of stake can participate
via delegating their stake to others. Absent an additional delegation mecha-
nism, this precludes private funds from participating in the staking process.
The impact of this restriction is not well understood, but as a conservative ap-
proximation it could be modeled by reducing the amount of stake held by honest
parties by the amount of funds held in the pool of private funds.

Following this, there needs to be a balance of incentives with regards to
keeping funds private: on the one hand maintaining a particularly large pool
may impact the working of the stake auction. On the other, if the pool is too
small, large transactions are made conspicuous by their size. In this regard,
solutions such as Möbius are the most safe as withdrawing funds is mandatory
and happens in a predictable timeline. Incentive structures such as “Anonymity
Mining” as implemented by TornadoCash [] need careful consideration before
deployment on Harmony: the original design targets Ethereum which, at the
time of writing, is based on a proof of work mechanism. A different option
is to provide avenues for contracts to participate in delegation, but additional
research is needed in that front.

5.1.2 Sharding

As Harmony uses sharding, any on-chain solutions need to be adjusted to ac-
count for it. As such, this would either require all private transactions to be
treated as cross-shard thus reducing the benefits of sharding, or to run a separate
instance on each shard, reducing the anonymity provided to a per-shard basis.
Solutions that are implemented as smart contracts are effectively “cross-shard”,
but require no design changes.

5.2 Nullifier Storage

A common requirement amongst most privacy solutions is that of storing the
list of nullifiers used in previous transactions. Without a privacy requirement,
one would simple delete used inputs or simply adjust account balances to han-
dle transaction inputs. However, simply deleting inputs would violate privacy.
Instead, nullifiers or key images must be stored to explicitly prevent inputs
being re-utilized. Zether utilizes an account model, but the requirement for
concurrency within an epoch implies that a short-term storage of nullifier is still
necessary, but limited.

Möbius 4.1 is similar to Zether in this regard as an emptied-out ring can
be reused. Unlike Zether, Möbius does not specify the notion of an epoch with

18

regard to withdrawals, but can be extended to provide a fixed time period for
withdrawals to be made.

For native support, a sorted list is sufficient and simple to implement with
predictable performance characteristics. Bloom filters may also be utilized to
improve performance, and enable different caching strategies if in-memory stor-
age becomes a concern.

For smart contacts, the storage cost under a naive approach may be consid-
erable: at a minimum, storing a nullifier requires writing to a previously null
address (to write the value itself) as well as updating the index of the last-
written position. Additionally, checking that a nullifier has not been re-used is
linear with regard to the number of previous withdrawals8.

A more efficient but more complex approach [GWW] is to use sparse Merkle
trees (Sect. 2.4.3). In this approach, checking for non-inclusion requires a Merkle
tree inclusion proof, and adding a nullifier to the set requires a Merkle tree in-
sertion (which overlaps with the inclusion proof). The checks for both operation
can be done in the open as well as inside a circuit, as the value (in this case also
the index) to be inserted is public knowledge. A hybrid approach involves main-
taining a rolling buffer of “recent” nullifiers as contract storage and periodically
updating a sparse Merkle tree in batches via a helper function that verifies a
number of leaf insertions and at the same time clears the buffer.

5.3 Side-Channels and Heuristic Attacks on Privacy

A number of research efforts [Wu+22; TBP20; AZ19; Mei+13; Kap+18] identify
techniques that can be used to link or even de-anonymize blockchain transac-
tions transactions. The “account” model makes this even more clear as trans-
actions by the same entity are linked explicitly (instead of the UTXO model,
where the link, however unambiguous is implicit).

As a trivial example, consider a user who uses a service to take funds from
their primary account to a secondary one. After a period of time, the user
wishes to make a transaction that requires more funds than the ones available
to either account. The user does not require the transaction to be private. A
careless option would be to fund the transaction by transferring all funds from
the secondary account to the primary one, effectively winding it down. It is clear
however that this would link the two accounts, retroactively breaking privacy.

While some heuristics are application specific, others are applicable to a
wide number of solutions. Careful choices in implementation and user interface
can mitigate a number of them, but used education is also necessary to pre-
vent trivial misuses: if a user believes that they are able to “anonymize” funds
sourced from their primary (transparent) address and then return them to the
same address, they will be unsuccessful.

Specific side-channels and heuristics include:

8Sorting the nullifier list does not help: typically, the number of writes to the list is equal
to the number of checks.

19

• Unique gas price [Wu+22] (for smart contract based solutions): If a user
manually enters a gas price, the exact value might leak information (e.g.
if the fee is a round number when converted to a particular fiat currency),
and also be used to link transactions (if the user habitually repeats pat-
terns).

• Address Matching: This represents the trivial scenario where a user mixes
funds with the same return address as the originating one.

• Leaks by value: In systems where arbitrary values are allowed, and values
are not masked privacy is necessarily limited to a small anonymity set.
If a particular value is actually unique in the system, then privacy is
impossible. A potential solution is to enforce fixed denominations (as in
TornadoCash 4.2) but that is not without complications; if the entirety
of a sum of funds is withdrawn at the same time, then the total value is
made apparent, and can be cross-checked against deposits.

• Incentive-based linking: [Wu+22] mention that TornadoCash offer re-
wards in the form of “anonymity points” to users who keep their deposits
for a period of time before withdrawing. As the points are a function of
time, this poses the following two potential problems.

First, if the points only correspond to a single deposit, they reveal the
time difference between deposit and withdrawal. If this time window can
only match a limited number of potential pairs, this breaks (or severely
impacts) privacy.

Second, further leakage may occur if the address claiming the result is the
same as the one making the deposit or withdrawal.

5.3.1 Gas Funding

In solutions that rely on smart contracts one must issue a withdrawal transac-
tion in order to receive all or part of the funds initially deposited. However, this
requires an amount of gas (or equivalently, funds) to be provided for the trans-
action to go forward. This creates a chicken and egg problem, where in order to
establish funds in an account unrelated to the original one, one needs to already
possess funds in such an account. Relayers, as described in TornadoCash for
instance, can provide a partial solution by receiving withdrawal request out of
band and issuing the transaction in exchange of a fee.

EIP-86 describes a system that allows transaction fees to be paid without
requiring an address to have funds initially, effectively generalizing the notion
of relayers. It is, however, not trivial to arrive at a solution that protects miners
from abuse while at the same time ensuring liveness.

20

6 Evaluation & Recommendations

6.1 On-Chain vs Smart Contracts

A major decision point for developing a privacy solution is that of choosing be-
tween adding direct on-chain functionality, or indirectly providing it via smart
contracts. An on-chain solution can be more performant by reducing overheads
and can be customized to integrate with operations such as staking or validat-
ing. However, it would also require that development is in sync with the core
protocol and increase the size of the code-base. Most relevant, however, is that
the most established solutions use UTXO-based as opposed to account-based
semantics. Zether could be used as a design guide to bridge the gap, by attach-
ing encrypted balance values to accounts and introducing a form of ring-like
transfers, where zero-valued transaction outputs would be sent to third-party
accounts to establish an anonymity set. The design and implementation scope
of such a solution would be considerable. Maintaining a separate UTXO-ledger
would similarly add high complexity for not much benefit. Quisquis is the most
fitting design due to its use of the account model but would require changes to
the signature infrastructure or implementation of a parallel ledger. Furthermore,
issues with concurrent transactions and client updates should be considered.

As Harmony shares the Ethereum EVM, smart-contract based solutions can
be readily used. While the overhead for smart contract execution is significant,
efficient SNARKS such as Groth16 or PLONK can easily fit within current
block gas constraints. Furthermore, development of a smart contract can be
decoupled from the main chain, or may be entirely community-led. Core devel-
opment efforts can be used to augment smart contracts by providing additional
functionality via precompiled contracts. EIP-1108 [CWa] produced a vast im-
provement on the practicality of ECC and pairing operations on smart contracts,
and similar proposals [CWb] can lead to further improvements.

6.2 Smart Contract Proof Systems

For smart contracts, cryptographic operations are quite expensive, so significant
care is required to select a proof system that achieves acceptable performance
and proof size. Bulletproofs, sigma protocols and direct computation can be
used for operations involving very limited data, e.g., ring signatures over small
rings in the case of Möbius or single signatures in the case of mixeth. In Zether,
where one needs to perform somewhat more complex operations on a number of
elements, gas costs immediately become a concern, even taking EIP-1108 [CWa]
into account (without it, costs are almost-prohibitive). Thus, such solutions are
best paired with a minimalist approach, where the provided functionality and
size of anonymity set are kept small.

SNARK-based systems on the other hand, are able to scale much better, at
the cost of establishing a trusted structured reference string (SRS). As such, we
are able to maximize the anonymity set at little cost. Additional functionality
(e.g. confidential values and internal transactions) can also be handled, sidestep-

21

ping some, but not all of the issues with transaction funding (Sect. 5.3.1.)

6.3 Smart Contract Solutions

A solution akin to TornadoCash appears to be the most attractive in terms
of anonymity pool size and operational efficiency. Furthermore, it can be aug-
mented with additional functionality (as in Nova) equivalent to ZCash. The
proof complexity of Zether is a significant issue, and re-engineering it to use a
SNARK would remove the benefit of trasparency.

As an alternative, Möbius can provide a limited9 level of privacy with a very
small code footprint, no trust requirements, and minimal impact on the active
stake distribution.

6.4 Additional Provisions

For smart contract based solutions, a number of improvements can be facilitated
by changes to the EVM, in two main areas. First, by providing precompiled
contracts for common yet complex cryptographic operations. This can be fruit-
ful by reducing gas costs for the contract itself [CWb], or by allowing operations
to be performed cheaply in the contract reducing load on the proof system. A
caveat is that the gas costs of Harmony are significantly lower than those of
Ethereum, in turn reducing the impact of cost reductions. Furthermore, imple-
menting an EIP that has not been finalized can lead to incompatibilities if the
proposal changes after being implemented.

A second area of interest lies in the ability to alter gas funding requirements
for smart contracts. For example, EIP-86 (Sect. 5.3.1) enables validators to
execute code (up to a bounded gas cost) on the expectation of payment once
execution concludes successfully. While this solves the issue of funding private
withdrawals without relayers, it also allows for a degree of denial of service
attacks with a wide impact. As such, the initial recommendation is to keep the
current funding mechanism.

Lastly, mechanisms that can facilitate selective disclosure or audits can be
considered. A degree of such functionality can be achieved via the use of viewing
keys, as in ZCash [Hop+], with limited overhead.

References

[Cha81] David L Chaum. “Untraceable electronic mail, return addresses, and
digital pseudonyms”. In: Communications of the ACM 24.2 (1981),
pp. 84–90.

[FS87] Amos Fiat and Adi Shamir. “How to prove yourself: Practical so-
lutions to identification and signature problems”. In: Advances in
Cryptology—Crypto’86. Springer. 1987, pp. 186–194.

9Due to its restricted pool size.

22

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. “The knowl-
edge complexity of interactive proof systems”. In: SIAM Journal on
computing 18.1 (1989), pp. 186–208.

[BR93] Mihir Bellare and Phillip Rogaway. “Random oracles are practical:
A paradigm for designing efficient protocols”. In: Proceedings of the
1st ACM Conference on Computer and Communications Security.
1993, pp. 62–73.

[CDS94] Ronald Cramer, Ivan Damg̊ard, and Berry Schoenmakers. “Proofs
of partial knowledge and simplified design of witness hiding pro-
tocols”. In: Annual International Cryptology Conference. Springer.
1994, pp. 174–187.

[Nef01] C Andrew Neff. “A verifiable secret shuffle and its application to
e-voting”. In: Proceedings of the 8th ACM conference on Computer
and Communications Security. 2001, pp. 116–125.

[AOS02] Masayuki Abe, Miyako Ohkubo, and Koutarou Suzuki. “1-out-of-n
signatures from a variety of keys”. In: International Conference on
the Theory and Application of Cryptology and Information Security.
Springer. 2002, pp. 415–432.

[FS07] Eiichiro Fujisaki and Koutarou Suzuki. “Traceable Ring Signature”.
In: Public Key Cryptography – PKC 2007. 2007.

[Val08] Paul Valiant. “Incrementally Verifiable Computation or Proofs of
Knowledge Imply Time/Space Efficiency”. In: Theory of Cryptog-
raphy, Fifth Theory of Cryptography Conference, TCC 2008, New
York, USA, March 19-21, 2008. Vol. 4948. Lecture Notes in Com-
puter Science. Springer, 2008, pp. 1–18. doi: 10.1007/978- 3-
540- 78524- 8_1. url: https://iacr.org/archive/tcc2008/
49480001/49480001.pdf.

[BG12] Stephanie Bayer and Jens Groth. “Efficient zero-knowledge argu-
ment for correctness of a shuffle”. In: Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques.
Springer. 2012, pp. 263–280.

[Bit+13] Nir Bitansky et al. “Recursive Composition and Bootstrapping for
SNARKS and Proof-Carrying Data”. In: Proceedings of the Forty-
Fifth Annual ACM Symposium on Theory of Computing. STOC ’13.
Palo Alto, California, USA: Association for Computing Machinery,
2013, pp. 111–120. isbn: 9781450320290. doi: 10.1145/2488608.
2488623. url: https://doi.org/10.1145/2488608.2488623.

[FZ13] Matthew Franklin and Haibin Zhang. “Unique ring signatures: A
practical construction”. In: International Conference on Financial
Cryptography and Data Security. Springer. 2013, pp. 162–170.

[Mei+13] Sarah Meiklejohn et al. “A fistful of bitcoins: characterizing pay-
ments among men with no names”. In: Proceedings of the 2013 con-
ference on Internet measurement conference. 2013, pp. 127–140.

23

[Van13] Nicolas Van Saberhagen. “CryptoNote v 2.0”. In: (2013).

[RMK14] Tim Ruffing, Pedro Moreno-Sanchez, and Aniket Kate. “Coinshuffle:
Practical decentralized coin mixing for bitcoin”. In: European Sym-
posium on Research in Computer Security. Springer. 2014, pp. 345–
364.

[Sas+14] Eli Ben Sasson et al. “Zerocash: Decentralized anonymous payments
from bitcoin”. In: 2014 IEEE symposium on security and privacy.
IEEE. 2014, pp. 459–474.

[Boo+15] Jonathan Bootle et al. “Short accountable ring signatures based on
DDH”. In: European Symposium on Research in Computer Security.
Springer. 2015, pp. 243–265.

[GK15] Jens Groth and Markulf Kohlweiss. “One-out-of-many proofs: Or
how to leak a secret and spend a coin”. In: Annual International
Conference on the Theory and Applications of Cryptographic Tech-
niques. Springer. 2015, pp. 253–280.

[MP15] Gregory Maxwell and Andrew Poelstra. “Borromean ring signa-
tures”. In: 8 (2015), p. 2019.

[Noe15] Shen Noether. Ring Signature Confidential Transactions for Mon-
ero. Cryptology ePrint Archive, Report 2015/1098. https://ia.
cr/2015/1098. 2015.

[DPP16] Rasmus Dahlberg, Tobias Pulls, and Roel Peeters. “Efficient sparse
merkle trees”. In: Nordic Conference on Secure IT Systems. Springer.
2016, pp. 199–215.

[Gro16] Jens Groth. “On the size of pairing-based non-interactive argu-
ments”. In: Annual international conference on the theory and ap-
plications of cryptographic techniques. Springer. 2016, pp. 305–326.

[Jed16] TE Jedusor. Mimblewimble. Defunct hidden service. Copy retrieved
from https://github.com/mimblewimble/docs/wiki/Mimblewimble-

origin. 2016.

[Öst16] Rasmus Östersjö. Sparse Merkle trees: Definitions and space-time
trade-offs with applications for balloon. 2016.

[Poe16] Andrew Poelstra. “Mimblewimble”. In: (2016).

[BGM17] Sean Bowe, Ariel Gabizon, and Ian Miers. “Scalable multi-party
computation for zk-SNARK parameters in the random beacon model”.
In: Cryptology ePrint Archive (2017).

[Sun+17] Shi-Feng Sun et al. “Ringct 2.0: A compact accumulator-based (link-
able ring signature) protocol for blockchain cryptocurrency mon-
ero”. In: European Symposium on Research in Computer Security.
Springer. 2017, pp. 456–474.

[Ben+18] Eli Ben-Sasson et al. “Scalable, transparent, and post-quantum se-
cure computational integrity”. In: Cryptology ePrint Archive (2018).

24

[Bün+18] Benedikt Bünz et al. “Bulletproofs: Short proofs for confidential
transactions and more”. In: 2018 IEEE Symposium on Security and
Privacy (SP). IEEE. 2018, pp. 315–334.

[Kap+18] George Kappos et al. “An empirical analysis of anonymity in zcash”.
In: 27th USENIX Security Symposium (USENIX Security 18). 2018,
pp. 463–477.

[MM18] Sarah Meiklejohn and Rebekah Mercer. “Möbius: Trustless tumbling
for transaction privacy”. In: (2018).

[AZ19] Nasser Alsalami and Bingsheng Zhang. “SoK: A Systematic Study
of Anonymity in Cryptocurrencies”. In: 2019 IEEE Conference on
Dependable and Secure Computing (DSC). 2019, pp. 1–9. doi: 10.
1109/DSC47296.2019.8937681.

[BGH19] Sean Bowe, Jack Grigg, and Daira Hopwood. Recursive Proof Com-
position without a Trusted Setup. Cryptology ePrint Archive, Report
2019/1021. https://ia.cr/2019/1021. 2019.

[Fau+19] Prastudy Fauzi et al. “Quisquis: A new design for anonymous cryp-
tocurrencies”. In: International conference on the theory and ap-
plication of cryptology and information security. Springer. 2019,
pp. 649–678.

[Jiv19] Aram Jivanyan. Lelantus: A New Design for Anonymous and Confi-
dential Cryptocurrencies. Cryptology ePrint Archive, Report 2019/373.
https://ia.cr/2019/373. 2019.

[Mal+19] Mary Maller et al. “Sonic: Zero-knowledge SNARKs from linear-
size universal and updatable structured reference strings”. In: Pro-
ceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security. 2019, pp. 2111–2128.

[TBP20] Florian Tramèr, Dan Boneh, and Kenneth G. Paterson. Remote
Side-Channel Attacks on Anonymous Transactions. Cryptology ePrint
Archive, Report 2020/220. https://ia.cr/2020/220. 2020.

[Yue+20] Tsz Hon Yuen et al. “Ringct 3.0 for blockchain confidential transac-
tion: Shorter size and stronger security”. In: International Confer-
ence on Financial Cryptography and Data Security. Springer. 2020,
pp. 464–483.

[CG21] Pyrros Chaidos and Vladislav Gelfer. “Lelantus-CLA”. In: Cryptol-
ogy ePrint Archive (2021).

[Dia21] Benjamin E Diamond. “Many-out-of-Many Proofs and Applications
to Anonymous Zether”. In: 2021 IEEE Symposium on Security and
Privacy (SP). IEEE. 2021, pp. 1800–1817.

[Fic+21] Ádám Ficsór et al. WabiSabi: Centrally Coordinated CoinJoins with
Variable Amounts. Cryptology ePrint Archive, Report 2021/206.
https://ia.cr/2021/206. 2021.

25

[Koh+21] Markulf Kohlweiss et al. “Snarky ceremonies”. In: International
Conference on the Theory and Application of Cryptology and In-
formation Security. Springer. 2021, pp. 98–127.

[Wu+22] Mike Wu et al. “Tutela: An Open-Source Tool for Assessing User-
Privacy on Ethereum and Tornado Cash”. In: CoRR abs/2201.06811
(2022). arXiv: 2201.06811. url: https://arxiv.org/abs/2201.
06811.

[Alea] Roman Storm Alexey Pertsev Roman Semenov. Tornado Cash Github.
url: https://github.com/tornadocash/tornado-core.

[Aleb] Roman Storm Alexey Pertsev Roman Semenov. Tornado Cash Pri-
vacy Solution. url: https://tornado.cash/audits/TornadoCash%
5C_whitepaper%5C_v1.4.pdf (visited on 2019).

[CWa] Antonio Salazar Cardozo and Zachary Williamson. EIP-1108: Re-
duce alt bn128 precompile gas costs. url: https://eips.ethereum.
org/EIPS/eip-1108 (visited on 2018).

[CWb] Antonio Salazar Cardozo and Zachary Williamson. EIP-3068: Pre-
compile for BN256 HashToCurve Algorithms. url: https://eips.
ethereum.org/EIPS/eip-3068 (visited on 2020).

[GWW] Ariel Gabizon, Zac Williamson, and TomWalton-Pocock. Aztec Yel-
low Paper. url: https://hackmd.io/@aztec-network/ByzgNxBfd
(visited on 2021).

[Hop+] Daira Hopwood et al. “Zcash protocol specification”. In: ().

[KV] Dmitry Khovratovich and Mikhail Vladimirov. Tornado Privacy
Solution Cryptographic Review. url: https : / / tornado . cash /

audits/TornadoCash_cryptographic_review_ABDK.pdf (visited
on 2019).

[Maxa] Greg Maxwell. CoinJoin: Bitcoin privacy for the real world. https:
//bitcointalk.org/index.php?topic=279249.0.

[Maxb] Greg Maxwell. Confidential transactions. https://people.xiph.
org/~greg/confidential_values.txt.

[] Tornado Cash Anonymity Mining. url: https://docs.tornado.
cash/tornado-cash-classic/anonymity-mining.

26

