
Mysten Fastcrypto ECDSA Secp256k1 Audit

Shresth Agrawal1,2 Petros Angelatos1,3
Pyrros Chaidos1,4

1 Common Prefix
2 Technical University of Munich

3 National Technical University of Athens
4 University of Athens

May 15, 2023
Last update: September 11, 2023

1 Overview

1.1 Introduction

Mysten Labs commissioned Common Prefix to conduct an audit of the
ECDSA secp256k1 implementation within their fastcrypto library. The
primary objectives of the audit were to assess the security and adherence
to relevant standards and investigate performance optimizations and code
quality improvements for this specific implementation.

ECDSA (Elliptic Curve Digital Signature Algorithm) is a crypto-
graphic algorithm utilizing elliptic curves to generate digital signatures. It
offers recoverable signatures, which allow for public key recovery from the
signature itself. The secp256k1 curve was deterministically constructed to
ensure efficient computation while maintaining high security [1, 2].

The fastcrypto implementation of ECDSA secp256k1 primarily serves
as a wrapper around the rust-secp256k1 crate, which itself is a Rust wrap-
per around the C implementation provided by bitcoin-core/secp256k1.
The bitcoin-core/secp256k1 library has undergone extensive testing and
is battle-tested through its use in the Bitcoin ecosystem [2,3].

This audit report thoroughly evaluates the ECDSA secp256k1 imple-
mentation within the fastcrypto library. The evaluation focuses on aspects
such as code security, efficiency, and reliability. Findings from the audit
are categorized by severity, and proposed solutions are provided for each
identified issue.

1.2 Audited Files

1. [25c36d5c] fastcrypto/src/secp256k1/mod.rs
2. [25c36d5c] fastcrypto/src/secp256k1/recoverable.rs

https://commonprefix.com
https://github.com/rust-bitcoin/rust-secp256k1/
https://github.com/bitcoin-core/secp256k1
https://github.com/MystenLabs/fastcrypto/blob/25c36d5c0f41245a473d9ea990269eddcbf2d48a/fastcrypto/src/secp256k1/mod.rs
https://github.com/MystenLabs/fastcrypto/blob/25c36d5c0f41245a473d9ea990269eddcbf2d48a/fastcrypto/src/secp256k1/recoverable.rs

1.3 Disclaimer

This audit does not give any warranties on the bug-free status of the given
code, i.e., the evaluation result does not guarantee the nonexistence of
any further findings of security issues. This audit report is intended to be
used for discussion purposes only. We always recommend proceeding with
several independent audits and a public bug bounty program to ensure
the security of the project.

1.4 Executive Summary

Overall the ECDSA Secp256k1 implementation within the fastcrypto li-
brary is a well-crafted and secure wrapper around the rust-secp256k1
crate. Only minor engineering-related issues were found during the au-
dit. These issues can be easily fixed by following the recommendations
provided in the report.

1.5 Findings Severity Breakdown

The findings are classified under the following severity categories accord-
ing to the impact and the likelihood of an attack.

Level Description
High Logical errors or implementation bugs that are easily

exploited. In the case of contracts, such issues can lead
to any kind of loss of funds.

Medium Issues that may break the intended logic, is a deviation
from the specification, or can lead to DoS attacks.

Low Issues harder to exploit (exploitable with low proba-
bility), issues that lead to poor performance, clumsy
logic, or seriously error-prone implementation.

Informational Advisory comments and recommendations that could
help make the codebase clearer, more readable, and
easier to maintain.

2 Findings

2.1 High

None Found.

2

2.2 Medium

None Found.

2.3 Low

L-01: Inconsistency between PartialEq, PartialOrd, and Ord trait
implementations for Secp256k1PublicKey

Affected Code:
• fastcrypto/src/secp256k1/mod.rs (line 94)
• fastcrypto/src/secp256k1/mod.rs (line 100)
• fastcrypto/src/secp256k1/mod.rs (line 106)

Summary: The PartialOrd and Ord trait implementations for Secp256k1PublicKey
exhibit inconsistency with the PartialEq implementation. While the
PartialEq implementation relies on the underlying rust_secp256k1::PublicKey
for equality comparison, the PartialOrd and Ord implementations
convert the rust_secp256k1::PublicKey to bytes and perform a
byte-level comparison. This inconsistency violates the Rust documen-
tation, which explicitly states that PartialOrd and Ord implementa-
tions must be consistent with PartialEq.

Suggestion: To avoid unexpected behavior and ensure consistency, it is
recommended not to provide implementations for the PartialOrd and
Ord traits within the library. If necessary, applications can implement
byte-level comparisons themselves.

Status: Resolved [d1f65d4f8]

2.4 Informational

I-01: Simplify usage of OnceCell with get_or_init instead of
get_or_try_init

Affected Code:
• fastcrypto/src/secp256k1/mod.rs (line 155)
• fastcrypto/src/secp256k1/mod.rs (line 220)
• fastcrypto/src/secp256k1/mod.rs (line 274)
• fastcrypto/src/secp256k1/recoverable.rs (line 78)

Summary: The current implementation uses get_or_try_init with OnceCell,
which expects that the initialization function passed to it might re-
turn a Result. However, in all calls to get_or_try_init, an ex-
plicit Ok(something) is returned. This can be simplified by using
get_or_init instead and not wrapping the object in Ok.

3

https://github.com/MystenLabs/fastcrypto/blob/120b30ca9980c87d1e12f28c3632613418b8777b/fastcrypto/src/secp256k1/mod.rs#L94
https://github.com/MystenLabs/fastcrypto/blob/120b30ca9980c87d1e12f28c3632613418b8777b/fastcrypto/src/secp256k1/mod.rs#L100
https://github.com/MystenLabs/fastcrypto/blob/120b30ca9980c87d1e12f28c3632613418b8777b/fastcrypto/src/secp256k1/mod.rs#L106
https://doc.rust-lang.org/std/cmp/trait.PartialEq.html
https://doc.rust-lang.org/std/cmp/trait.PartialEq.html
https://github.com/MystenLabs/fastcrypto/commit/d1f65d4f8440c19b60c11b1844cd0ef1360f51c4
https://github.com/MystenLabs/fastcrypto/blob/120b30ca9980c87d1e12f28c3632613418b8777b/fastcrypto/src/secp256k1/mod.rs#L155
https://github.com/MystenLabs/fastcrypto/blob/120b30ca9980c87d1e12f28c3632613418b8777b/fastcrypto/src/secp256k1/mod.rs#L220
https://github.com/MystenLabs/fastcrypto/blob/120b30ca9980c87d1e12f28c3632613418b8777b/fastcrypto/src/secp256k1/mod.rs#L274
https://github.com/MystenLabs/fastcrypto/blob/120b30ca9980c87d1e12f28c3632613418b8777b/fastcrypto/src/secp256k1/recoverable.rs#L78

Suggestion: Consider replacing get_or_try_init with get_or_init in
the affected code to simplify the calls and remove the unnecessary
wrapping of the object in Ok.

Suggested Fix: Here is an example fix

--- a/fastcrypto/src/secp256k1/mod.rs
+++ b/fastcrypto/src/secp256k1/mod.rs
@@ -271,8 +271,7 @@ impl Authenticator for

Secp256k1Signature {
impl AsRef<[u8]> for Secp256k1Signature {

fn as_ref(&self) -> &[u8] {
self.bytes

- .get_or_try_init::<_, eyre::Report>(||
Ok(self.sig.serialize_compact()))

- .expect("OnceCell invariant violated")
+ .get_or_init(|| self.sig.serialize_compact())

}
}

Status: Resolved [2cc382a83]

I-02: Inconsistency in PartialEq trait implementation for
Secp256k1RecoverableSignature

Affected Code: fastcrypto/src/secp256k1/recoverable.rs (line 95)
Summary: The current implementation of the PartialEq trait for

Secp256k1RecoverableSignature is inconsistent with other struc-
tures in the module. While Secp256k1Signature, Secp256k1PublicKey,
and Secp256k1PrivateKey utilize the underlying rust_secp256k1
implementation for PartialEq, the Secp256k1RecoverableSignature
compares byte representations instead.

Suggestion: To ensure consistency, it is recommended to use the rust_secp256k1
implementation of PartialEq for Secp256k1RecoverableSignature.

Status: Resolved [2cc382a83]

I-03: Replace hardcoded value with constant in Secp256k1RecoverableSignature

Affected Code:
• fastcrypto/src/secp256k1/recoverable.rs (line 62)
• fastcrypto/src/secp256k1/recoverable.rs (line 64)
• fastcrypto/src/secp256k1/recoverable.rs (line 81)
• fastcrypto/src/secp256k1/recoverable.rs (line 82)

4

https://github.com/MystenLabs/fastcrypto/commit/2cc382a83b466ef4b642ba8eb73b38dd9ff46f6b
https://github.com/MystenLabs/fastcrypto/blob/120b30ca9980c87d1e12f28c3632613418b8777b/fastcrypto/src/secp256k1/recoverable.rs#L95
https://github.com/MystenLabs/fastcrypto/commit/2cc382a83b466ef4b642ba8eb73b38dd9ff46f6b
https://github.com/MystenLabs/fastcrypto/blob/120b30ca9980c87d1e12f28c3632613418b8777b/fastcrypto/src/secp256k1/recoverable.rs#L62
https://github.com/MystenLabs/fastcrypto/blob/120b30ca9980c87d1e12f28c3632613418b8777b/fastcrypto/src/secp256k1/recoverable.rs#L64
https://github.com/MystenLabs/fastcrypto/blob/120b30ca9980c87d1e12f28c3632613418b8777b/fastcrypto/src/secp256k1/recoverable.rs#L81
https://github.com/MystenLabs/fastcrypto/blob/120b30ca9980c87d1e12f28c3632613418b8777b/fastcrypto/src/secp256k1/recoverable.rs#L82

Summary: The code utilizes the literal value 64 at multiple locations,
but the value is dependent on SECP256K1_RECOVERABLE_SIGNATURE_SIZE.
Using a constant value SECP256K1_RECOVERABLE_SIGNATURE_SIZE
- 1 instead of the literal 64 ensures consistency in case the
SECP256K1_RECOVERABLE_SIGNATURE_SIZE is modified in the future.

Suggestion: Replace the literal value 64 with the constant
SECP256K1_RECOVERABLE_SIGNATURE_SIZE - 1 in the affected code
to improve code maintainability and ensure consistency.

Status: Resolved [2cc382a83]

3 Supplementary Information

3.1 Testing Signatures with id 2 and 3

We expanded test coverage during the audit to account for high-index
(2-3) recoverable signatures. Signatures with such index values only oc-
cur when their r value is small enough that it is feasible for either r or
r + q to be the x-coordinate of an intermediate curve point, where q is
the curve order. Due to the relation between the curve order q and field
modulus p, such cases can only occur rarely during normal usage as the
fraction p−q

p is negligible. However, it’s simple and tractable to construct
them on purpose. For this reason, it is important that they be treated
consistently by both branches of the implementation (i.e., converting be-
tween recoverable and non-recoverable forms of the same signature whilst
keeping track of the related public key should never change the output of
the verification function). We have added testing to confirm this is indeed
the case.
Pull Request: github.com/MystenLabs/fastcrypto/pull/607

5

https://github.com/MystenLabs/fastcrypto/commit/2cc382a83b466ef4b642ba8eb73b38dd9ff46f6b
https://github.com/MystenLabs/fastcrypto/pull/607

References

1. Certicom research, sec 2: Recommended elliptic curve domain parameters, 2010.
https://www.secg.org/sec2-v2.pdf.

2. Bitcoin wiki secp256k1, 2019. https://en.bitcoin.it/wiki/Secp256k1.
3. S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.

6

https://www.secg.org/sec2-v2.pdf
https://en.bitcoin.it/wiki/Secp256k1

About Common Prefix

Common Prefix is a blockchain research, development, and consulting
company consisting of a small number of scientists and engineers spe-
cializing in many aspects of blockchain science. We work with industry
partners who are looking to advance the state-of-the-art in our field to
help them analyze and design simple but rigorous protocols from first
principles, with provable security in mind.

Our consulting and audits pertain to theoretical cryptographic proto-
col analyses as well as the pragmatic auditing of implementations in both
core consensus technologies and application layer smart contracts.

7

	 Mysten Fastcrypto ECDSA Secp256k1 Audit
	References

