
Mysten ECVRF and Ristretto255 Audit

Shresth Agrawal1,2 Petros Angelatos1,3
Pyrros Chaidos1,4 Dionysis Zindros1,5

1 Common Prefix
2 Technical University of Munich

3 National Technical University of Athens
4 University of Athens
5 Stanford University

March 23, 2023
Last update: September 11, 2023

1 Overview

1.1 Introduction

Mysten Labs commissioned Common Prefix to audit the Elliptic Curve
Verifiable Random Function (ECVRF) and Ristretto255 implementations
within their fastcrypto library. The primary objectives of the audit were
to assess the security, adherence to the relevant RFCs, and also investi-
gate performance optimizations, and code quality improvements to these
particular implementations. Fastcrypto is a Rust-based library that im-
plements selected cryptographic primitives and also serves as a wrapper
for several carefully chosen cryptography crates, ensuring optimal perfor-
mance and security for Mysten Labs’ software solutions, including their
blockchain platform, Sui.

Verifiable Random Functions (VRFs) can be used to provide trustless
randomness in blockchain protocols [2,4]. Elliptic Curve VRFs (ECVRFs)
employ the elliptic curve Diffie–Hellman assumption for the security of
the VRF [6]. The fastcrypto ECVRF implementation follows the draft-
irtf-cfrg-vrf-15 RFC [5], except for its usage of the Ristretto255 curve.
This deviation is due to the Ristretto technique, which offers advan-
tages, such as constructing prime-order elliptic curve groups with non-
malleable encodings, resulting in improved security properties [3]. The
Ristretto255 implementation is a wrapper around the curve25519-dalek-
ng implementation which follows the draft-irtf-cfrg-ristretto255-decaf448-
07 RFC [3].By leveraging Ristretto255, Mysten Labs seeks to strengthen
the ECVRF implementation while maintaining close compatibility with
the RFC.

https://github.com/MystenLabs/fastcrypto
https://datatracker.ietf.org/doc/draft-irtf-cfrg-vrf/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-vrf/
https://github.com/zkcrypto/curve25519-dalek-ng
https://github.com/zkcrypto/curve25519-dalek-ng
https://datatracker.ietf.org/doc/draft-irtf-cfrg-ristretto255-decaf448/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-ristretto255-decaf448/


This audit report comprehensively evaluates the ECVRF and Ristret-
to255 implementations within the fastcrypto library. The findings are
categorized by severity and proposed solutions for each identified issue.
We have audited the code for security, efficiency, and reliability. The scope
of this audit was limited to the ECVRF and Ristretto255 implementations
and did not extend to the library’s dependencies or other components.

1.2 Audited Files

1. [963205c6] vrf.rs
2. [963205c6] ristretto255.rs

1.3 Disclaimer

This audit does not give any warranties on the bug-free status of the given
code, i.e., the evaluation result does not guarantee the nonexistence of
any further findings of security issues. This audit report is intended to be
used for discussion purposes only. We always recommend proceeding with
several independent audits and a public bug bounty program to ensure
the security of the project.

1.4 Executive Summary

Overall the implementation of the ECVRF using the Ristretto255 is of
very high quality, closely following the RFC guidelines and adhering to
Rust’s best practices.

No security-critical issues were identified during the audit process.
However, minor deviations from the RFC specification were observed,
such as the ecvrf_encode_to_curve function hashing twice instead of
once as specified by the RFC, the verify_output function not being
entirely in line with the RFC, and a discrepancy in Ristretto scalar de-
serialization leading to multiple representations for elements that should
be unique.

Performance optimization suggestions presented in the report resulted
in a significant speedup of approximately 27% on the verification bench-
mark using cached pre-computation and variable time multi-multiplica-
tions. It should be noted that the Ristretto255 implementation leverages
the curve25519-dalek-ng crate, which is forked from curve25519-dalek.
The curve25519-dalek-ng crate is currently 214 commits behind the orig-
inal repository, potentially missing critical security fixes present in the
original repo.

2

https://github.com/MystenLabs/fastcrypto/blob/963205c6d0538fe548b8b10037cf87a53af6f424/fastcrypto/src/vrf.rs
https://github.com/MystenLabs/fastcrypto/blob/main/fastcrypto/src/groups/ristretto255.rs
https://github.com/zkcrypto/curve25519-dalek-ng
https://github.com/dalek-cryptography/curve25519-dalek


In summary, the fastcrypto ECVRF and Ristretto255 implementa-
tions have been found to be of high quality, with only minor issues which
can be addressed easily.

1.5 Findings Severity Breakdown

The findings are classified under the following severity categories accord-
ing to the impact and the likelihood of an attack.

Level Description
High Logical errors or implementation bugs that are easily

exploited. In the case of contracts, such issues can lead
to any kind of loss of funds.

Medium Issues that may break the intended logic, is a deviation
from the specification, or can lead to DoS attacks.

Low Issues harder to exploit (exploitable with low proba-
bility), issues that lead to poor performance, clumsy
logic, or seriously error-prone implementation.

Informational Advisory comments and recommendations that could
help make the codebase clearer, more readable, and
easier to maintain.

2 Findings

2.1 High

None Found.

2.2 Medium

M01: Extra hashing in ecvrf_encode_to_curve

Affected Code: fastcrypto/src/vrf.rs (line 99)
Summary: In the ecvrf_encode_to_curve implementation, the expand_message

function applies the hash once before returning the expanded mes-
sage. Additionally, the map_to_point function applies the hash once
again before calling the function from_uniform_bytes. However, the
Hash-to-Curve RFC Appendix B only hashes once before calling the
from_uniform_bytes function. This does not lead to security issues
but is a deviation from the specification and has negative performance
implications.

3

https://github.com/MystenLabs/fastcrypto/blob/963205c6d0538fe548b8b10037cf87a53af6f424/fastcrypto/src/vrf.rs#L99
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-curve-16#name-hashing-to-ristretto255


Suggestion: We recommend using from_uniform_bytes directly in the
ecvrf_encode_to_curve to avoid the additional hashing and poten-
tial compatibility issues with other designs.

Suggested Fix: [370694e]
Status: Resolved [84fd7c7]

M-02: Non-canonical ristretto scalar deserialization
Affected Code: fastcrypto/src/groups/ristretto255.rs (line 191)
Summary: The ristretto scalar deserialization differs from the one up-

stream as it does not enforce the value to be canonical (i.e., that the
input is already reduced). In the context of ECVRF, this is not dan-
gerous as the s and c components of the proof should not be assumed
unique. Proofs following the spec for nonce derivation are determin-
istic, but this cannot be checked or enforced by the verifier: an alter-
native prover can derive k via other means with no clear avenue for
detection (i.e they are not unique). In general use, however, it can
enable multiple representations for elements that should be unique,
making replay attack detection harder.

Suggestion: Consider updating the ristretto scalar deserialization to use
the upstream from_canonical_bytes function.

Suggested Fix: [ebcd7e1]
Status: Resolved [d1fe3d6]

2.3 Low

L-01: Consider removing verify_output and bring verify inline
with the RFC
Affected Code: fastcrypto/src/vrf.rs (line 45)
Summary: The verify_output function allows the verification of out-

put given a proof, public key, input, and output. This function is not
present in the RFC standard, and its usage could lead to potential
pitfalls. The function requires the purported output of the VRF as an
input. One can get the output in two ways: fetching it from someone
or generating it locally by hashing the proof. The first scenario wastes
bandwidth, as the output can be locally generated using the proof. In
the second scenario, we generate the output twice: firstly, to provide it
as an input to the function, and, secondly, inside the verify_output
itself. Removing the verify_output function would harden the imple-
mentation, as its use case is unclear. Additionally, the current verify

4

https://github.com/MystenLabs/fastcrypto/pull/543/commits/370694eeffed74a57c816758d472640e4011ae7e
https://github.com/MystenLabs/fastcrypto/commit/84fd7c7428c5f59185aecc56a2e0a006e8e07de1
https://github.com/MystenLabs/fastcrypto/blob/963205c6d0538fe548b8b10037cf87a53af6f424/fastcrypto/src/groups/ristretto255.rs#L191
https://github.com/MystenLabs/fastcrypto/pull/543/commits/ebcd7e1c8e6f0bbf48667f995017151a20289886
https://github.com/MystenLabs/fastcrypto/commit/d1fe3d670e2e4b756813b3c8cfc09711ede24b68
https://github.com/MystenLabs/fastcrypto/blob/963205c6d0538fe548b8b10037cf87a53af6f424/fastcrypto/src/vrf.rs#L45


function returns a boolean, while the RFC specification returns False
or (True, Output).

Suggestion: Consider removing the verify_output function and mod-
ify the verify function to align with the RFC specification, returning
False or (True, Output). This will help prevent potential issues for
downstream developers.

Status: Open

L-02: Use of vartime multiscalar multiplication for faster verifi-
cation
Affected Code:

• fastcrypto/src/vrf.rs (line 248)
• fastcrypto/src/vrf.rs (line 252)

Summary: Multiscalar multiplication takes the most time during verifi-
cation. The current implementation uses RistrettoPoint::multiscalar_mul
to ensure a constant runtime to avoid leaking information. However,
the upstream RistrettoPoint also allows for vartime_multiscalar_mul,
which is faster but does not run in constant time. vartime_multiscalar_mul
can be used for the verification side, where no private information can
be leaked.

Suggestion: Consider using vartime_multiscalar_mul for the verifi-
cation side to improve performance without risking the leakage of
private information.

Suggested Fix: [53e16c]
Status: Resolved [c3b24fb]

2.4 Informational

I-01: Choice of SUITE_STRING and DST

Affected Code:
• fastcrypto/src/vrf.rs (line 78)
• fastcrypto/src/vrf.rs (line 88)

Summary: Currently, both SUITE_STRING and DST mention “sui”. We
understand that the fastcrypto library is primarily used for the Sui
blockchain. We recommend using a more neutral identifier to encour-
age broader adoption of the implemented parameters.

Suggestion: Change the SUITE_STRING and DST identifiers to a more
neutral term, such as “fastcrypto,” to promote standardization and
wider adoption of the library.

Status: Open

5

https://github.com/MystenLabs/fastcrypto/blob/963205c6d0538fe548b8b10037cf87a53af6f424/fastcrypto/src/vrf.rs#L248
https://github.com/MystenLabs/fastcrypto/blob/963205c6d0538fe548b8b10037cf87a53af6f424/fastcrypto/src/vrf.rs#L252
https://github.com/MystenLabs/fastcrypto/pull/543/commits/53e16c8f82d63a84cdc842d93fc5c26cebbe109b
https://github.com/MystenLabs/fastcrypto/commit/c3b24fb38d00b54e9337687d9086e913e636d40b
https://github.com/MystenLabs/fastcrypto/blob/963205c6d0538fe548b8b10037cf87a53af6f424/fastcrypto/src/vrf.rs#L78
https://github.com/MystenLabs/fastcrypto/blob/963205c6d0538fe548b8b10037cf87a53af6f424/fastcrypto/src/vrf.rs#L88


I-02: Consistent use of SHA512 reference type H
Affected Code:

• fastcrypto/src/vrf.rs (line 108)
• fastcrypto/src/vrf.rs (line 137)
• fastcrypto/src/vrf.rs (line 141)

Summary: Some parts of the code use the reference type H for SHA512,
while others directly use SHA512. It is recommended to use the ref-
erence type H consistently throughout the code.

Suggestion: Modify the code to consistently use the reference type H of
SHA512, ensuring uniformity and improved maintainability.

Suggested Fix: [d8edc923]
Status: Open

I-03: Dependency on curve25519-dalek-ng
Summary: The Ristretto255 implementation in the fastcrypto library

depends on the curve25519-dalek-ng crate, which is a fork of the
curve25519-dalek crate. At the time of the audit, curve25519-dalek-ng
is approximately 200 commits behind curve25519-dalek. This discrep-
ancy may result in missed security updates, performance improve-
ments, or other enhancements available in the original curve25519-
dalek repository.

Suggestion: We recommend reviewing the changes made in the curve-
25519-dalek repository since the fork and consider updating the de-
pendency on curve25519-dalek-ng to include any relevant updates, bug
fixes, or security patches. Alternatively, consider switching back to the
original curve25519-dalek crate if the changes in curve25519-dalek-ng
are no longer necessary or can be incorporated into the fastcrypto
library in another way.

Status: Open

I-04: Optimize challenge generation by caching hash state
Affected Code: fastcrypto/src/vrf.rs (line 157)
Summary: The current implementation of ecvrf_challenge_generation

initializes and updates the hash with the constant SUITE_STRING ev-
ery time it is called. This can be optimized by caching the initial hash
state to avoid redundant hashing of the constant SUITE_STRING.

Suggestion: Introduce a cached hash state using Lazy to store the initial
state of the hash with the SUITE_STRING already hashed. This would
allow reusing the cached state and avoid the unnecessary hashing of
SUITE_STRING for each invocation of ecvrf_challenge_generation.

6

https://github.com/MystenLabs/fastcrypto/blob/963205c6d0538fe548b8b10037cf87a53af6f424/fastcrypto/src/vrf.rs#L108
https://github.com/MystenLabs/fastcrypto/blob/963205c6d0538fe548b8b10037cf87a53af6f424/fastcrypto/src/vrf.rs#L137
https://github.com/MystenLabs/fastcrypto/blob/963205c6d0538fe548b8b10037cf87a53af6f424/fastcrypto/src/vrf.rs#L141
https://github.com/MystenLabs/fastcrypto/pull/543/commits/d8edc92340dd957f4bd05c356379be7ffa0916a5
https://github.com/zkcrypto/curve25519-dalek-ng
https://github.com/dalek-cryptography/curve25519-dalek
https://github.com/MystenLabs/fastcrypto/blob/963205c6d0538fe548b8b10037cf87a53af6f424/fastcrypto/src/vrf.rs#L157


Suggested Fix: [ae62e9]
Status: Open

I-05: Store compressed state of ECVRFPublicKey to optimize
challenge generation
Affected Code: fastcrypto/src/vrf.rs (line 91)
Summary: The current implementation of ECVRFPublicKey does not

store its compressed state, leading to potential recalculations of the
compressed form during challenge generation. This can be optimized
by storing the compressed state of the ECVRFPublicKey in memory.

Suggestion: Modify the ECVRFPublicKey structure to include a field for
the compressed representation. Update the serialization and deserial-
ization methods to work with the new structure. This would allow
for a more efficient challenge generation process by reusing the stored
compressed state instead of recalculating it.

Suggested Fix: [a5bd0a]
Status: Open

I-06: Precompute multiscalar multiplication using VartimeRistret-
toPrecomputation
Affected Code: fastcrypto/src/vrf.rs
Summary: Parts of multiscalar multiplication during the verification

can be cached to improve the performance of the ECVRF verification
process.

Suggestion: Introduce a challenge_cache field in the ECVRFPublicKey
structure and use VartimeRistrettoPrecomputation to precompute
the multiscalar multiplication between the generator and the public
key.

Suggested Fix: [0c0520] (needs more work)
Status: Open

3 Performance Optimizations and Further Benchmarking

In our analysis, we utilized the existing benchmark code for ECVRF,
which was developed using the Criterion crate. Our focus was on optimiz-
ing the verification function, as it is a crucial component in a blockchain
setting where it is performed multiple times by a large validator set.

7

https://github.com/MystenLabs/fastcrypto/pull/543/commits/ae62e9bdb527574974a34413ef540d3f29d38d87
https://github.com/MystenLabs/fastcrypto/blob/963205c6d0538fe548b8b10037cf87a53af6f424/fastcrypto/src/vrf.rs#L91
https://github.com/MystenLabs/fastcrypto/pull/543/commits/a5bd0a335c4120fb05db801895a778905aaffcac
https://github.com/MystenLabs/fastcrypto/blob/963205c6d0538fe548b8b10037cf87a53af6f424/fastcrypto/src/vrf.rs
https://github.com/MystenLabs/fastcrypto/pull/543/commits/0c05200998a89fc177a26a8b9d4254bd0e0070de


By generating flamegraphs for the verification benchmark, we were
able to identify parts of the code that took the most time. The two mul-
tiscalar multiplication operations were the most time-consuming, followed
by compressing public keys.

To address these performance bottlenecks, we proposed using vartime
multiscalar multiplication (L-02), which is faster than constant-time mul-
tiscalar multiplication, and caching public key compression (I-05). Our
analysis indicates that implementing both L-02 and I-05 can improve
performance by 27%.

We also suggested additional caching techniques in I-04 and I-06. How-
ever, further work is required to concretely benchmark the improvements
offered by these techniques and determine whether their implementation
is warranted. While we strongly recommend adopting L-02 and I-05 due
to their demonstrated benefits, more research is needed for I-04 and I-
06. A careful trade-off must be considered between code readability and
performance gains before deciding to implement these optimizations.

4 Supplementary Information

4.1 Adding Batch Verification Support

The current ECVRF implementation in the fastcrypto library does not
support batch verification. Batch verification can improve the efficiency of
verifying multiple VRF proofs simultaneously. A recent paper by Badertscher
et al. [1], describes a batching technique based on randomized testing that
can double verification speed when verifying batches of 1024 ECVRF
proofs. The batched proofs do not need to pertain to the same user or the
same input. To facilitate this, they change the representation of the proof,
replaceing the c component of the VRF proof with U, V as calculated by
the prover.

Such proofs use an alternate verification process, where the verifier
derives c from the challenge generation function and checks consistency
via two verification equations (as opposed to deriving two values U, V ).
This is effectively a reordering of standard verification: there, we use
c, s to derive U, V via the same equations and then use U, V to check
the derived value is equal to the one provided by the verifier. Because
standard verification needs to use U, V as hash inputs, it’s not possible to
reduce the effort in the calculation. In alternate verification however, we
only need a true/false output out of each equation. In fact, we are only
interested in the logical AND of the two. This enables us to reduce effort
in exchange of a small soundness error.

8



We shift the terms so that each equation sums to zero. Due to the
Schwartz–Zippel lemma, a randomized sum of such equations will almost
always be non-zero if even one of the terms is non-zero (i.e of one of
the equations is false). In computational terms, we only need to perform
one (very long) multi-multiplication and some field operations. These op-
timizations can also be combined with the variant multi-multiplication
functions provided by Dalek. The main practical cost to this approach is
that U, V are 32 bytes each instead of 16 bytes for c.

Batch-format proofs can be “compressed” to the standard form at
negligible computational cost, if not verifying at the same time. Stan-
dard proofs can be made batch friendly, though the conversion cost is
equivalent to a full verification.

We recommend exploring the addition of batch verification support
to the ECVRF implementation in the fastcrypto library, following the
approach described in the referenced paper. This could enhance the effi-
ciency and performance of the library, particularly when verifying multi-
ple VRF proofs at once.

4.2 Secret Scalar and Nonce Derivation

The ECVRF standard provides two separate notions of a prover’s secret:
the secret key SK and the (derived) secret scalar x. In general, the secret
key is used in two places: first, to produce the public key via x and
second to set a prefix used in the nonce generation for proofs. There are
two different design paths described in the RFC:

– Suites deriving from P-256 have a simple structure, where the key, the
scalar and the prefix are the same value (modulo representation of the
secret as a bytestring for the prefix). Suites deriving from P-256 use
RFC Section 5.4.2.1 to derive nonces.

– Suites deriving from ed25519 have a more complex structure, where
the key is a bytestring hashed into a 64 byte string, half of which is
used to derive the secret scalar and half of which is used to derive the
nonce as per RFC Section 5.4.2.2.

The current implementation uses the P-256 design for the secret scalar
and the ed25519 design for the nonce. This does not directly contradict
the guidance in the RFC, as there is no specific dependence between the
representation of SK and the nonce derivation. Additionally, the hLen
requirement of 64 mentioned in RFC Section 5.4.2.2 is met by the imple-
mented instantiation. We do not believe there exists an issue with this

9



design choice: domain separation is not impacted and the contribution of
the secret key to the nonce is similar.

We note that it seems that aligning fully with either of the two RFC
designs is not trivial. One either needs to follow the more complex HMAC
design from P-256 or follow the scalar derivation from ed25519 which in-
cludes operations that are unneeded in ristretto. Part of the ed25519
scalar derivation performs bit operations with the intention of clearing
the ed25519 cofactor which does not exist in the ristretto curve. As such,
following ed25519 would involve unnecessary operations, otherwise, a de-
gree of divergence may still be present.

10



References

1. C. Badertscher, P. Gaži, I. Querejeta-Azurmendi, and A. Russell. On uc-secure
range extension and batch verification for ecvrf. Cryptology ePrint Archive, Paper
2022/1045, 2022. https://eprint.iacr.org/2022/1045.

2. B. David, P. Gaži, A. Kiayias, and A. Russell. Ouroboros Praos: An adaptively-
secure, semi-synchronous proof-of-stake blockchain. In Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, pages 66–98.
Springer, 2018.

3. H. de Valence, J. Grigg, M. Hamburg, I. Lovecruft, G. Tankersley, and F. Valsorda.
The ristretto255 and decaf448 Groups. Internet-Draft draft-irtf-cfrg-ristretto255-
decaf448-07, Internet Engineering Task Force, Apr. 2023. Work in Progress.

4. Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich. Algorand: Scaling
byzantine agreements for cryptocurrencies. In Proceedings of the 26th symposium
on operating systems principles, pages 51–68, 2017.

5. S. Goldberg, L. Reyzin, D. Papadopoulos, and J. Včelák. Verifiable Random Func-
tions (VRFs). Internet-Draft draft-irtf-cfrg-vrf-15, Internet Engineering Task Force,
Aug. 2022. Work in Progress.

6. S. Micali, M. Rabin, and S. Vadhan. Verifiable random functions. In 40th Annual
Symposium on Foundations of Computer Science (Cat. No.99CB37039), pages 120–
130, 1999.

11

https://eprint.iacr.org/2022/1045


About Common Prefix

Common Prefix is a blockchain research, development, and consulting
company consisting of a small number of scientists and engineers spe-
cializing in many aspects of blockchain science. We work with industry
partners who are looking to advance the state-of-the-art in our field to
help them analyze and design simple but rigorous protocols from first
principles, with provable security in mind.

Our consulting and audits pertain to theoretical cryptographic proto-
col analyses as well as the pragmatic auditing of implementations in both
core consensus technologies and application layer smart contracts.

12


	 Mysten ECVRF and Ristretto255 Audit 
	References


